Contact Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 - Pakistan. Tel: +92-51-90642174 +92-51-90642177 +92-300-9705550 E-mail: mkhan@qau.edu.pk mkhan 21@yahoo.com

PROF. DR. MASOOD KHAN (T.I.)

Personal

Education

- Marital status
- Date of Birth
- CNIC No.
- Passport No.
- Religion
- Nationality
- Domicile
- Permanent Address

Married April 01, 1973 13302-0337961-1 WV4109612 Islam Pakistani Khyber Pakhtunkhwa (Haripur) Village Dingi, P.O. Kotnajibullah Tehsil & District Haripur, Pakistan Tel: +92-995-317123-4

July 2000 - June 2005

PhD in *Applied Mathematics* from Department of Mathematics, Quaid-i-Azam University, Islamabad-Pakistan. The subject of research is '*Fluid Mechanics*' whereas research theme is '*Some Flow Problems of an Oldroyd Fluid: Homotopy Analysis Method and Numerical Computation*'. Thesis was submitted in October 2004, Oral examination conducted on June 22, 2005 and award of the degree was approved on July 15, 2005 by Advanced Studies & Research Board, Quaid-i-Azam University, Islamabad-Pakistan.

MPhil

PhD

February 1998 – February 2000

MPhil in *Applied Mathematics* from Department of Mathematics, Quaid-i-Azam University, Islamabad-Pakistan. The subject of research was '*Fluid Mechanics*' whereas research theme was '*Stoke's layers in a rotating system*'.

MSc

October 1994 – October 1997

MSc in Mathematics from Department of Mathematics, Peshawar University, Peshawar.

BSc

May 1991 – May 1993

BSc with A-course of Mathematics, B-course of Mathematics and Statistics, from Peshawar University, Peshawar.

Seminars/Talks • Delivered

- 'Exact solutions for magnetohydrodynamic flow in a rotating fluid', at the Department of Mathematics, Quaid-i-Azam University, Islamabad on May 21, 2002.
- 'Analytical solutions for second grade fluid flows', at the Department of Mathematics, Quaid-i-Azam University, Islamabad on February 25, 2003.
- 'Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid', in International Conference on Mathematical Models & Methods in Fluid Mechanics, July 4 – 6, 2005, Department of Mathematics, COMSATS Institute of Information Technology Islamabad-*Pakistan*.
- 'Flows for fractional Burgers' fluid in porous space', in Third International Conference on Mathematical Models & Methods in Fluid Mechanics, July 17 – 19, 2006, Department of Mathematics, COMSATS Institute of Information Technology Islamabad-*Pakistan*.
- 'Steady flow of Oldroyd-8 constant fluid between coaxial cylinders in a porous space', in International Conference on Mathematics, September 12 14, 2006, Department of Mathematics, Quaid-i-Azam University, Islamabad-*Pakistan*.
- 'Slip effects on the shearing flows of a non-Newtonian fluid in a porous medium', in International Conference on Recent Developments in Fluid Mechanics, July 02 04, 2007, Fluid Mechanics Group, Department of Mathematics, Quaid-i-Azam University, Islamabad-*Pakistan*.
- 'Unsteady flows of a second grade fluid between two side walls perpendicular to a flat plate', in Fourth International Conference on Mathematical Models & Methods in Fluid Mechanics, July 07 – 09, 2008, Department of Mathematics, COMSATS Institute of Information Technology Islamabad-*Pakistan*.
- 'Exact solutions of starting flows for a fractional Burgers' fluid between coaxial cylinders', in Second International Conference on Recent Developments in Fluid Mechanics, August 11 – 13, 2008, Fluid Mechanics Group, Department of Mathematics, Quaid-i-Azam University, Islamabad-*Pakistan*.
- 'Steady flow and heat transfer of a Sisko fluid in an annular pipe', in Third International Conference on Recent Developments in Fluid Mechanics, July 30 – August 01, 2009, Fluid Mechanics Group, Department of Mathematics, Quaid-i-Azam University, Islamabad-*Pakistan*.
- 'New exact solutions of Stokes second problem for MHD flow of a second grade fluid through porous medium', in International Scientific Spring - 2010, March 01 – 06, 2010, National Centre for Physics, Quaid-i-Azam University, Islamabad-*Pakistan*.
- 'Oscillatory Couette flow in a rotating channel in the presence of an inclined magnetic field', in Fifth International

Conference on Recent Developments in Fluid Mechanics, June 24 – 26, 2013, Fluid Mechanics Group, Department of Mathematics, Quaid-i-Azam University, Islamabad-*Pakistan*.

- 'Convective heat transfer to the Sisko fluid past a bidirectional stretching sheet', in Sixth International Conference on Recent Developments in Fluid Mechanics, March 17 – 19, 2015, School of Natural Sciences, National University of Sciences and Technology, Sector H-12 Islamabad-*Pakistan*.
- 'On Multiple Solutions in Flow of Generalized Newtonian Fluids (GNF)', in Series of Seminars on Recent Research Topics in Mathematics, April 28, 2018, Riphah International University, Islamabad-Pakistan.

Research Projects

- Modeling and Simulation of Glass Flow in Pressing Process', supervised by Prof. R. Matheij and Dr. M. Anthonissen, at the abdus salam international centre for theoretical physics (ICTP), trieste, *Italy* (2004).
- 'MHD effects on the flows of a non-Newtonian fluid', Quaid-i-Azam University, Islamabad, *Pakistan* (for year 2005-06).
- 'Study of flows on non-Newtonian fluid through a porous medium', Quaid-i-Azam University, Islamabad, *Pakistan* (for year 2006-07).
- 'Heat transfer analysis of steady flows of non-Newtonian fluids', Quaid-i-Azam University, Islamabad, *Pakistan* (for year 2008-09).
- 'Exact solutions for flows of non-Newtonian fluids', Quaid-i-Azam University, Islamabad, *Pakistan* (for year 2009-10).
- 'Reduction and solutions for unsteady flow of a third grade fluid with plate suction or injection', Quaid-i-Azam University, Islamabad, *Pakistan* (for year 2010-11).
- 'On multiple solutions for unsteady Boundary layer flows of generalized Newtonian fluids', Higher Education Commission of Pakistan, Islamabad, *Pakistan*, for years 2016-18 (*Project No. 6210/Federal/NRPU/R&D/HEC/2016*, *PKR 1.54 Million*).

Scholarship/ Fellowships

- Recipient of *merit scholarship* at Peshawar University during MSc.
- Recipient of merit scholarship at Quaid-i-Azam University during MPhil.
- Recipient of *merit scholarship* at Quaid-i-Azam University from July 2000 to December 2001 during PhD.
- Recipient of *Dr Raziuddin Siddiqui fellowship* from January 2002 to December 2002 during PhD.
- Recipient of *Dr Raziuddin Siddiqui fellowship* from January 2003 to December 2003 during PhD.
- Recipient of *Dr Raziuddin Siddiqui fellowship* from January 2004 to December 2004 during PhD.

Workshops/ Conferences

- 26th International Nathiagali Summer College on Physics and Contemporary Needs, July 2001, Pearl Continental Hotel, Bhurban, *Pakistan*.
- Computational Mathematics & Related Topics, July 29 30, 2002, COMSATS, Islamabad, *Pakistan*.
- Applications of Symmetry Methods, October 15 17, 2002, Department of Mathematics, Quaid-i-Azam University, Islamabad, *Pakistan*.
- Mathematical Modeling and Its Application to Development Issues, October 29 November 2, 2002, COMSATS Headquarters, Islamabad, *Pakistan*.
- 2nd International Bhurban Conference on Applied Sciences and Technology, June 16
 June 21, 2003, Pearl Continental Hotel, Bhurban, *Pakistan*.
- International Conference on Models and Methods in Fluid Mechanics, June 23 June 27, 2003, COMSATS Institute of Information Technology, Abbottabad, *Pakistan*.
- Workshop on Modeling in Life and Material Sciences and in Technology, March 8

 April 2, 2004, the abdus salam international centre for theoretical physics (ICTP), trieste, *Italy*.
- International Conference on Mathematical Models & Methods in Fluid Mechanics, July 4 – 6, 2005, Department of Mathematics, COMSATS Institute of Information Technology Islamabad-*Pakistan*.
- Third International Conference on Mathematical Models & Methods in Fluid Mechanics, July 17 – 19, 2006, Department of Mathematics, COMSATS Institute of Information Technology Islamabad-*Pakistan*.
- International Conference on Mathematics, September 12 14, 2006, Department of Mathematics, Quaid-i-Azam University, Islamabad-*Pakistan*.
- All Pakistan Mathematical Conference, June 07 09, 2007, All Pakistan Mathematical Association (APMA), Islamabad-*Pakistan*.
- International Conference on Recent Developments in Fluid Mechanics, July 02 04, 2007, Fluid Mechanics Group, Department of Mathematics, Quaid-i-Azam University, Islamabad-*Pakistan*.
- Fourth International Conference on Mathematical Models & Methods in Fluid Mechanics, July 07 – 09, 2008, Department of Mathematics, COMSATS Institute of Information Technology Islamabad-*Pakistan*.
- Second International Conference on Recent Developments in Fluid Mechanics, August 11 – 13, 2008, Fluid Mechanics Group, Department of Mathematics, Quaidi-Azam University, Islamabad-*Pakistan*.
- Third International Conference on Recent Developments in Fluid Mechanics, July 30 Auguest 01, 2009, Fluid Mechanics Group, Department of Mathematics, Quaidi-Azam University, Islamabad-*Pakistan*.
- All Pakistan Mathematical Conference 2010, June 22 23, 2010, All Pakistan Mathematical Association (APMA), Islamabad-*Pakistan*.
- Fourth International Conference on "Recent Developments in Fluid Mechanics," August 03 – 05, 2010, Fluid Mechanics Group (FMG), Department of Mathematics, Quaid-i-Azam University, Islamabad-*Pakistan*.

 Fifth International Conference on "Recent Developments in Fluid Mechanics," June 24 – 26, 2013, Fluid Mechanics Group (FMG), Department of Mathematics, Quaidi-Azam University, Islamabad-*Pakistan*.

Teaching/ Research Experience

- Worked as Lecturer at Government Post Graduate College Haripur from November 22, 1997 to February 28, 1998.
- Junior research assistant from February 1998 to February 2000 at the Department of Mathematics QAU Islamabad.
- Senior research assistant from July 2000 to October 2004 at the Department of Mathematics QAU Islamabad.
- Worked as Lecturer at College of Electrical & Mechanical Engineering, National University of Science and Technology Rawalpindi from October 15, 2003 to July 30, 2005.
- Worked as *Lecturer* at the *Department of Mathematics, Quaid-i-Azam University Islamabad* from September 30, 2005 to July 06, 2007.
- Worked as Assistant Professor on TTS at the Department of Mathematics, Quaidi-Azam University Islamabad since July 07, 2007 to January 20, 2012.
- Worked as Associate Professor (Tenured) at the Department of Mathematics, Quaid-i-Azam University Islamabad since January 21, 2012 to October 08, 2016.
- Working as *Professor (Tenured)* at the *Department of Mathematics, Quaid-i-Azam University Islamabad* since *October 09, 2016* to date.

Courses Taught

Graduate Level (BS)

- Calculus
- Calculus and analytic geometry-I
- Calculus and analytic geometry-II
- Linear algebra and ordinary differential equations
- Fourier analysis and partial differential equations
- Three dimensional geometry and vector analysis

Post Graduate Level

<u>MSc</u>

- Advanced calculus
- Real analysis
- Complex analysis
- Fluid mechanics-I
- Integral equations
- Ordinary differential equations
- Partial differential equations

Phil/PhD

- Basics of the theory of fluids
- Non-Newtonian fluid mechanics
- Advanced partial differential equations
- Mathematical techniques for boundary value problems

Research Interests	 Mathematical modeling. Newtonian and non-Newtonian fluid mechanics. Peristaltic motion. Bio-mechanics. Blood flow problems. Computational fluid dynamics. Homotopy analysis method. Homotopy perturbation method. Symmetry methods for differential equations.
Distinctions/ Honours	 University merit scholarship during MSc. University merit scholarship during MPhil. D. Raziuddin Siddiqui fellowship during PhD. Visiting scholar at the Abdus Salam International Centre for Theoretical Physics, Trieste (ICTP), Italy. Ranked as the 5th topmost Mathematician in Pakistan according to the data (book 2011) of Pakistan Council for Science and Technology (PCST). Recipient of Research Productivity Award (RPA 2005-06) from PCST. Recipient of Research Productivity Award (RPA 2006-07) from PCST. Recipient of Research Productivity Award (RPA 2007-08) from PCST. Recipient of Research Productivity Award (RPA 2008-09) from PCST. Recipient of Research Productivity Award (RPA 2010-11) from PCST. Recipient of Research Productivity Award (RPA 2010-11) from PCST. Recipient of Research Productivity Award (RPA 2011-12) from PCST. Recipient of Research Productivity Award (RPA 2011-12) from PCST. Recipient of Research Productivity Award (RPA 2013-14) from PCST. Recipient of Research Productivity Award (RPA 2015-16) from PCST. Recipient of Research Productivity Award (RPA 2015-16) from PCST. Recipient of Research Productivity Award (RPA 2015-16) from PCST. Recipient of Research Productivity Award (RPA 2016-17) from PCST. Recipient of Research Productivity Award (RPA 2017-18) from PCST. Author of 251 International research publications. Honour of having 3793 ISI citations. Honour of having 3793 ISI citations (without self). h index = 33 according to ISI. Reviewer of 42 international journals. Honour of having collaborations with 20 leading international research scientists.
Awards/ medals	• <i>FMG Gold Medal 2005</i> by Fluid Mechanics Group, Department of Mathematics, Quaid-i-Azam University Islamabad, Pakistan.
	• TWAS Prize 2008 in Mathematics for the Young Scientists in the South awarded by the Third World Academy of Sciences (TWAS),

Trieste, Italy.

	• Awarded <i>Tamgha-i-Imtiaz (Civil award)</i> by the <i>President of Pakistan (2013)</i> .
	• PAS Gold Medal 2017 in Mathematical Sciences by the Pakistan Academy of Sciences, Pakistan.
	• <i>Research Productivity Award 2011, 2012, 2013, 2014, 2016, 2017, 2018</i> by the Pakistan Council for Science and Technology (PCST), Pakistan.
International Visits	• The Abdus Salam International Centre for Theoretical Physics (ICTP), trieste, <i>Italy</i> , as a visiting scholar from March 8 – April 2, 2004.
International Assignments	 Reviewer/Refree for the following international journals: Acta Mechanica (USA). Advanced Science Letters (USA). AIP Advances (USA). Applied Mathematical Letters (USA). Applied Mathematical Letters (USA). Applied Mathematical Modelling (USA). Applied Mathematics and Computation (USA). Applied Mathematics and Mechanics (English Edition) Boundary Value Problems (USA). Brazilian Journal of Chemical Engineering (BRAZ1L). Canadian Journal of Physics (Canada). Chemical Engineering Communications (USA). Communication in Nonlinear Science and Numerical Simulation (UK). Computer Physics Communications (USA). Computer Physics Communications (UK). Computers and Mathematics with Applications (USA). IIUM Engineering Journal (Malaysia). International Journal of Applied Mechanics. International Journal of Multiphase Flow (UK). International Journal of Nulmerical Methods for Heat and Fluid Flow. International Journal of Numerical Methods for Heat and Fluid Flow. International Journal of Numerical Methods for Heat and Fluid Flow. International Journal of Numerical Methods for Heat and Fluid Flow.

- Journal of Applied Mathematics
- Journal of Engineering Mathematics •
- Journal of Heat Transfer
- Journal of Molecular Liquids
- Journal of Porous Media (USA).
- Mathematical Modelling and Analysis (LITHUANIA).
- Meccanica (NETHERLANDS).
- Mechanics Research Communications (USA).
- Nonlinear Analysis: Modelling and Control (Lithuania).
- Nonlinear Analysis: Real World Applications (USA). ٠
- Numerical Methods for Partial Differential Equations (USA).
- Physica A (USA).
- Quaestiones Mathematicae (SOUTH AFRICA).
- Scholarly Research Exchange (USA). •
- Scientific Reports (UK).
- The Arabian Journal of Science and Engineering (SAUDI ARABIA) .
- Tamkang Journal of Science and Engineering (Taiwan).
- Thermal Science (SERBIA).
- Transport in Porous Media (UK).
- Walailak Journal of Science and Technology (Thailand)
- Zeitschrift für Naturforschung A (ZNA) (Germany).

Administrati- ve Services	 In-charge Seminar Library, Department Islamabad from January 01, 2006 to Jun In-charge Seminar Series, Department of Islamabad since October 17, 2007 to D In-charge Building Maintenance, Depart University, Islamabad since October 17 <i>Officer In-charge University Lodge</i>, Que June 06, 2007 to October 20, 2011. Elected <i>Member of the Academic Count</i> from January 24, 2008 to January 23, 2 <i>Officer In-charge/Director Students Aff</i> from June 14, 2012 to October 31, 200 <i>Secretary/Member University Disciplint</i> Islamabad from June 14, 2012 to October Elected <i>Member of the Academic Count</i> from March 18, 2014 to March 17, 201 In-charge Seminar Library, Department Islamabad from May 01, 2014 February In-charge MSc Computer Lab., Deputy, Islamabad from February 12

- of Mathematics, Quaid-i-Azam University, ne 30, 2007.
- f Mathematics, Quaid-i-Azam University, ecember 31, 2012.
- tment of Mathematics, Quaid-i-Azam 7, 2007 to December 2012..
- uaid-i-Azam University, Islamabad from
- cil of Quaid-i-Azam University, Islamabad 011.
- ffairs, Quaid-i-Azam University, Islamabad 17.
- e Committee, Quaid-i-Azam University, ober 31, 2017.
- cil of Quaid-i-Azam University, Islamabad 7.
- t of Mathematics, Quaid-i-Azam University, y 11, 2016.
- epartment of Mathematics, Quaid-i-Azam 2, 2016 to date.
- mmittee, Quaid-i-Azam University, Islamabad from November 01, 2017 to 31 October 2019.

Scientific & Professional Societies	 Life member of the All Pakistan Mathematical Association. Member of the Quaid-i-Azam University Blood Donor Association (QBDS). Member of the Quaid-i-Azam University Welfare Society.
PhD Supervision	 Mr. Muhammad Ayub (2012) Lie Algebraic Properties for System of ODEs.
	 Mr. Azeem Shahzad (2013) On the Boundary Layer Flows of Sisko Fluid: Mathematical Modeling and Analytic Solutions.
	 Ms. Asia Anjum (2014) On the Starting Solutions for Oscillating Motions of a Burgers Fluid.
	 Mr. Asif Munir (2015) Convective Heat Transfer in Boundary Layer Flows of Sisko Fluid.
	 Ms. Rabia Malik (2017) Heat Transfer Characteristics of Sisko Fluid with Convective Boundary Conditions.
	6. <i>Mr. Waqar Azeem</i> (2017) On Boundary Layer Flow and Heat Transfer to Burgers Fluid.
	7. <i>Mr. Hashim</i> (2018)A Numerical Study of Flow and Heat Transfer to Carreau Fluid.
	8. <i>Mr. Muhammad Azam</i> (2018) Unsteady Heat and Mass Transfer Mechanisms in Carreau Nanofluid Flow.
	 Mr. Masood ur Rehman (2018) Boundary Layer Flows of Modified Second Grade Fluid over Stretching Surfaces with Heat Transfer.
	 Ms. Mehwish Manzur (waiting for viva voce) Boundary Layer Flows and Heat transfer of Cross Fluid.
	 Mr. Latif Ahmad (waiting for viva woce) Mathematical Modeling and Numerical Simulation of Sisko Fluid Flow over a Stretching Surface.

	12. <i>Mr. Muhammad Irfan</i> (thesis submitted) On Stretched Flows of Carreau Fluid with Heat Transfer: Modeling and Analysis.
	13. Mr. Aamir Hamid (thesis write up in progress)
	14. Ms. Humara Sardar (thesis write up in progress)
	Numerical Study of Carreau Fluid Flow with Infinite Shear Rate Viscosity.
	15. Mr. Jawad Ahmed (work in progress)
	16. Mr. M. Hafeez (work in progress)
	17. Mr. Awais Ahmad (work in progress)
	18. Mr. Zahoor Iqbal (work in progress)
MPhil Supervision	1. Ms. Tanzeela Latif (2007)
	Oscillatory flows of second grade fluid through porous space in a rotating system.
	2. <i>Mr. Saeed-ur-Rahman</i> (2007) The influence of Hall current and heat transfer on the non-Newtonian fluid.
	3. <i>Ms. Maryam Saleem</i> (2007) Analytic study of flows induced by accelerating plate
	 Mr. Syea Hyder Ali Muttaqi Shah (2008) MHD flow of a second grade fluid between two side walls perpendicular to a plate through a porous medium.
	5. Ms. Enbher Naheed (2008)
	Starting solutions for some oscillating motions of MHD second grade fluid through a porous medium
	6. Mr. Aamir Nadeem (2008)Flow of a MHD Jeffrey fluid due to oscillating porous plate through porous medium.
	7. <i>Ms. Javeria Farooq</i> (2008) Effects of heat transfer on the flow of a Sisko fluid through a porous medium.
	 8. Ms. Sidra Mahmood (2008) New exact solutions corresponding to the first problem of Stokes for MHD Oldroyd-B fluid.

9. Ms. Asia Anjum (2009)

MHD transient flows of a Burgers' fluid in a channel of rectangular cross-section.

10. Ms. Qurrat-ul-Ain (2009)

Heat transfer analysis of a non-linear flow problem involving Oldroyd 8-constant fluid.

11. Ms. Saira Hussnain (2009)

Magnetohydrodynamic flows of a Maxwell fluid between two side walls perpendicular to a plate.

12. Mr. Sufian Munawar (2009)

Steady flow and heat transfer of a Sisko fluid in annular pipe.

13. Ms. Rabia Malik (2009)

Unsteady flow of a Burgers' fluid between two side walls perpendicular to a plate.

14. Mr. Kaleem Iqbal (2009)

MHD flows of a non-Newtonian fluid through a porous medium near an accelerated plate.

15. Mr. Sajid Khan (2009)

New exact solutions of Stokes second problem for MHD Newtonian fluid through porous space.

16. Mr. Hashim (2010)

New exact solutions of MHD flow of a second grade fluid through porous space.

17. Mr. Zeeshan (2010)

On hydromagnetic flow of an Oldroyd-B fluid near a pulsating plate through porous space.

18. Mr. Taha Aziz (2011)

Some reduction and solutions for unsteady flow of a third grade fluid

19. Ms. Madiha Ajmal (2011)

Starting solutions for oscillating motions of MHD Oldroyd-B fluid through porous space in cylindrical domains.

20. Ms. Naila Shaheen (2011)

Steady flow and heat transfer of a MHD Sisko fluid through porous space in annular pipe.

21. Ms. Misbah Arshad (2011)

New exact solutions of non-Newtonian fluids for Stokes second problem.

22. Ms. Faiza Iftikhar (2011)

Some unsteady flows of non-Newtonian fluids between two side walls perpendicular to a plate.

- 23. Ms. Saira Saeed (2011)Oscillatory Couette flow in the presence of an inclined magnetic field and porous medium.
- *24. Mr. Ramzan Ali* (2012) On heat transfer analysis of MHD Falkner Skan flow.
- **25.** *Mr. Shah Jahan* (2012) Analytic solutions of MHD power-law fluid.
- **26.** *Ms. Mehwish Ashraf* (2012) Heat transfer analysis of micropolar fluid over a permeable stretching surface.
- 27. Ms. Wajiha Tahir (2012) On the oscillating motion of MHD Oldroyd-B fluid between two plates over a plane wall.
- 28. Ms. Samina Afzal (2012) Unsteady flow and heat transfer of a MHD viscous fluid between moving parallel plates.
- 29. Mr. Masood ur Rehman (2012)Exact solution for thermal radiation on MHD flow over a stretching/shrinking sheet with convective boundary condition.
- 30. Mr. Muhammad Asif Jafar (2012)

Effect of Hall current on convective heat transfer of a couple stress fluid in an inclined rotating channel filled with porous medium.

31. Ms. Aqsa Ijaz (2013)

Some starting flows for oscillating motions of MHD Oldroyd-B fluid through porous media.

32. *Ms. Ambreen Khalid* (2013) On heat and mass transfer of MHD stagnation-point flow of a power-law fluid.

33. Ms. Nadia Nazeer (2013)

New exact solution for Reyleigh-Stokes problem of non-Newtonian fluid in porous medium and rotating frame.

34. Ms. Asma Farooq (2013)

Exact Solution of Electroosmotic Flow for a Generalized Burgers Fluid in Cylindrical Domain.

35. Ms. Maryam Shahab (2013)

Exact Solutions for an MHD Second Grade Fluid Flow Induced by Shear Stresses.

36. Ms. Mehwish Manzur (2013)

Unsteady MHD Axisymmetric Flow of a Power-law Fluid over a Radially Stretching Sheet.

37. Ms. Zarmina Asif (2013)

MHD Stagnation Point Flow of a Power-law Fluid over Radially Stretching Sheet.

38. Ms. Asma Farooq (2014)

Hydromagnetic Flow and Heat Transfer in a Second Grade Fluid due to Oscillatory Stretching Surface.

39. Ms. Qurat-ul-Ain (2014) Starting Solutions for a Second Grade Fluid Flow due to Oscillating shear Stress.

40. Ms. Shazia Bashir (2014)

Unsteady Flow and Heat Transfer of a Casson Fluid over a Flat Plate.

41. Ms. Ammara Amin (2014)

Exact Solutions for Motion of an Oldroyd-B Fluid due to Oscillating Shear Stress.

42. *Mr. M. Irfan* (2014) Radiation Effect on Flow of a Nanofluid with Variable Thermal Conductivity.

43. Ms. Nazia Rehman (2014)

MHD Stagnation Point Flow of Nanofluid over an Exponentially Stretching Sheet with Radiation.

44. Ms. Sonia Bibi (2014)

On Heat Transfer of an MHD Stagnation Point Flow of Power-law Fluid over Radially Stretching Sheet.

45. Ms. Saba Sharif (2014)

Heat Transfer in Unsteady Flow of Power-law Fluid over a Radially Stretching Sheet.

46. Ms. Muzna Ahmad (2015)

On Generalized Oldroyd-B Fluid Flow between Two Side Walls Perpendicular to a Plate.

47. *Ms. Farida Khan* (2015) Heat Transfer in a Power-law Fluid with Different Boundary Conditions.

48. *Ms. Tabinda Sajjad* (2015) Boundary Layer Slip Flow of a Nanofluid along a Stretching Cylinder.

- **49.** *Ms. Maham Mubeen* (2015) Mixed Convection Flow of a Nanofluid along a Stretching Cylinder.
- Ms. Mariam Bibi (2015) Transient Electro-osmotic Flow of Oldroyd-B Fluid.
- *51. Ms. Tabinda Zafar* (2017) Melting Heat Transfer in Sisko Fluid Flow.
- **52.** *Ms. Ayesha Javeed* (2017) Heat and Mass Transfer in Carreau Fluid Flow.
- 53. Mr. Abdul Hafeez (2017) Dual Solutions for MHD Slip Flow of Nanofluid in the presence of Nonlinear Radiation.
- *54. Mr. M. Noor-ul- Huda* (2017) Nonlinear Radiative Heat Transfer in Carreau Nanofluid Flow over a Wedge.

55. Mr. Umair Khan (2018)

Dual Solutions for Magneto-Sisko Nanomaterial Flow induced by Shrinking Surface.

56. Mr. Sharjeel (2018)

Thermally Radiative Carreau Nanofluid Flow over a Radially Permeable Shrinking Sheet: Multple Solutions.

57. Ms. Anum Zahoor (2018)

Numerical Simulation of Radiative Heat Transfer in Sisko Fluid Flow with Velocity Slip

58. Ms. Nadia Bibi (2018)

Effects of Variable Thermal Conductivity and Heat Generation on Convective Heat Transfer of Carreau Nanofluid Flow.

59. Mr. Wahid Rehman (2018)

Chemical Reaction and Activation Energy Impacts on Unsteady Radiative Flow of Sisko Fluid.

60. Mr. Muhammad Yasir (2019)

Dual Solutions of Double Diffusive Sisko Fluid Flow with Variable Thermal Conductivity and Mass Diffusivity.

61. Ms. Rida Aftab (2019)

Nonlinear Radiative Heat Transfer in Flow of Oldroyd-B Nanofluid.

62. Ms. Sana Ijaz (2019)

Multiple Solutions in Stagnation Point Flow of Carreau Fluid with Homogeneous-Heterogeneous Reactions.

- 63. Mr. Alamda Hussain (work in progress) Mixed Convective Flow of Nanofluids due to Permeable Vertical Surface: Local Nonsimilarity Solution.
- 64. Mr. Wajid Ali (work in progress)

Research Collaborations

•

- Professor Dr Saleem Asghar (SI, TI)
 Department of Mathematics,
 COMSATS Institute of Information Technology,
 Islamabad, Pakistan.
- **Professor Dr Muhammad Ayub** Department of Mathematics Qauid-i-Azam University Islamabad, Pakistan.
- **Professor Dr Constantin Fetecau** Department of Mathematics Technical University of Iasi R-6600 Iasi Romania.
- Professor Dr Fazal Mahmood Mahomed School of Computational & Applied Mathematics, Centre for Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa.
- *Professor Dr Tasawar Hayat (HI, SI, TI, AVH fellow)* Department of Mathematics, Qauid-i-Azam University Islamabad, Pakistan.
- *Professor Dr Saied Abbasbandy* Department of Mathematics, Imam Khomeini University, Ghazvin 34149-16818, Iran.
- **Professor Dr A.M. Siddiqui** Department of Mathematics The Pennsylvania State University

York Campus, York, Pennsylvania 17403, USA.

- *Professor D. Yongqi Wang* Institut fur Mechanik III Technische Universitat Darmstadt D. 64289, Darmstadt Germany.
- **Professor Dr Dumitru Vieru** Department of Theoretical Mechanics Technical University of Iasi R-6600 Iasi Romania.
- *Professor Dr Haitao Qi* School of Applied Mathematics & Statistics, Shandong University at Weihai Weihai 264209, China.
- Professor Dr Shaowei Wang
 Department of Mechanics and Aerospace Engineering, College of Engineering,
 Paking University, Beijing, China.

Book Chapters

1. *Heat Transfer Studies and Applications*, Edited by Salim Newaz Kazi, ISBN 978-953-51-2146-6, 404 pages, Publisher: InTech, Chapters published July 29, *2015* under CC BY 3.0 license, doi:10.5772/58727.

Chapter 13

Convective heat transfer to Sisko fluid over a nonlinear radially stretching sheet By *Masood Khan*, Asif Munir and Azeem Shahzad URL: http://dx.doi.org/10.5772/60799

International Research Publications

Published

2001

1.	Exact solutions in MHD rotating flow	
	Authors: A.M. Siddiqui, M. Khan, Asghar and T. Hayat	
	Journal: Mechanics Research Communications, 28, 485 – 491 (2001) UK.	

(ISI Impact Factor = 0.340)

2002

2.	Exact solutions for magnetohydrodynamic flow in a rotating fluid	
	Authors: S. Asghar, M. Khan, A.M. Siddiqui and T. Hayat	
	Journal: Acta Mech. Sinica, 18, 244-251 (2002) China.	

(*ISI Impact Factor* = **0.726**)

2003

3.	Non-Newtonian flows over an oscillating plate with variable suction
	Authors: T. Hayat, Q. Abbas, M. Khan and A.M. Siddiqui
	Journal: Archives of Mechanics, 55, 327 – 344 (2003) Poland.

(*ISI Impact Factor* = **0.000**)

2004

4.	On the explicit analytic solutions of an Oldroyd 6-constant fluid	
	Authors: T. Hayat, M. Khan and M. Ayub	
	Journal: Int. J. Engineering Science, 42, 123 – 135 (2004) UK.	
		(ISI Impact Factor = 1.065)

 Exact solutions of flow problems of an Oldroyd-B fluid Authors: T. Hayat, *M. Khan* and M. Ayub Journal: Applied Mathematics and Computation, 151, 105 – 119 (2004) USA.

18/44

		(ISI Impact Factor = 0.567)
6.	Magnetohydrodynamic flow of an Oldroyd 6-constant fluid Authors: T. Hayat, M. Khan and S. Asghar Journal: Applied Mathematics and Computation, 155, 417 – 425 (2004)	USA.
		(<i>ISI Impact Factor</i> = 0.567)
7.	Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid <i>Authors</i> : T. Hayat, <i>M. Khan</i> and S. Asghar <i>Journal</i> : Acta Mechanica, 168, 213 – 232 (2004) <i>Austria</i> .	(ISU Impact Eactor = 0.546)
		(151 impact Pactor = 0.340)
8.	Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnet <i>Authors</i> : T. Hayat, <i>M. Khan</i> and M. Ayub <i>Journal</i> : J. Math. Anal. Appl., 298, 225 – 244 (2004) <i>USA</i> .	ic field
		(ISI Impact Factor = 0.490)
9.	Transient flows of a second grade fluid <i>Authors</i> : T. Hayat, <i>M. Khan</i> , A.M. Siddiqui and S. Asghar <i>Journal</i> : Int. J. Non-Linear Mechanics, 39, 1621 – 1633 (2004) <i>UK</i> .	(ISI Impact Factor = 1.004)
10.	Magnetic fluid model induced by peristaltic waves <i>Authors</i> : A.M. Siddiqui, T. Hayat and <i>M. Khan Journa</i> l: J. Physical Society Japan, 73, 2142 – 2147 (2004) <i>Japan</i> .	(ISI Impact Factor = 1.577)
200!	5	
11.	Unsteady motions of a generalized second grade fluid <i>Authors: M. Khan</i> , S. Nadeem, T. Hayat and A.M. Siddiqui <i>Journal:</i> Mathematical and Computer Modelling, 41, 629 – 637 (2005) <i>U</i>	I K . (ISI Impact Factor = 0.422)
12.	Homotopy solutions for a generalized second grade fluid past a porous pl <i>Author</i> :s T. Hayat and M. Khan <i>Journal</i> : Non-Linear Dynamics, 42, 395–405 (2005) <i>Netherlands</i> .	late
		(ISI Impact Factor = 0.647)
13.	Magnetohydrodynamic transient flows of a non-Newtonian fluid <i>Authors</i> : S. Asghar, <i>M. Khan</i> and T. Hayat <i>Journal</i> : Int. J. Non-Linear Mechanics, 40, 589 – 601 (2005) <i>UK</i> .	
		(ISI Impact Factor = 0.904)
14.	On non-linear flows with slip boundary condition <i>Authors</i> : T. Hayat, <i>M. Khan</i> and M. Ayub <i>Journal</i> : Z. Angew. Math. Phys., 56, 1012 – 1029 (2005) <i>Switzerland</i> .	(ISU Impact Eactor = 0.455)
		(151 Impact Factor = 0.455)
15.	The unsteady Couette flow of a second grade fluid in a layer of porous m <i>Authors</i> : T. Hayat, <i>M. Khan</i> , M. Ayub and A.M. Siddiqui <i>Journal:</i> Archives of Mechanics, 57, 403 – 414 (2005) <i>Poland</i> .	(ISI lumget Egg(art 0, 470)
		(1SI Impact Factor = 0.479)

2006

16.	Exact solution for MHD flow of a generalized Oldroyd-B fluid with mod <i>Authors</i> : <i>M. Khan</i> , T. Hayat and S. Asghar	ified Darcy's law
	Journal. Int. J. Elig. Sci., 44, 555–557 (2000) UK.	(ISI Impact Factor = 1.060)
17.	Influence of Hall current on the flows of generalized Oldroyd-B fluid in a <i>Authors</i> : <i>M. Khan</i> , K. Maqbool and T. Hayat <i>Journal</i> : Acta Mechanica, 184, 1–13 (2006) <i>Austria</i>	a porous space
	<i>Journal</i> . <i>Hea</i> Meenanica, 104, 1–15 (2000)/ <i>Husu</i> a.	(ISI Impact Factor = 0.690)
18.	Some analytical solutions for second grade fluid flows for cylindrical geo <i>Authors:</i> T. Hayat, <i>M. Khan</i> and M. Ayub	ometries
	Journal: Mathematical and Computer Modelling, 43, 16–29 (2006) UK.	(ISI Impact Factor = 0.432)
19.	Non-Newtonian flow between concentric cylinders <i>Authors</i> : T. Hayat, M. Khan and Y. Wang	() Nederslave Iv
	<i>Journal:</i> Commun. Nonlinear Sci. Numer. Simulation, 11, 297–305 (200	6) Netherlands. (ISI Impact Factor = 0.000)
20.	A mathematical model of peristalsis in tubes through a porous medium <i>Authors</i> : T. Hayat, <i>M. Khan</i> , S. Asghar and A.M. Siddiqui <i>Journal</i> : I. Porous Media 9, 55–67 (2006) <i>USA</i>	
	<i>Journal</i> . J. Forous Media, <i>J</i> , <i>JJ</i> 07 (2000) 0011.	(ISI Impact Factor = 0.493)
21.	Steady flow of an Oldroyd 8-constant fluid between coaxial cylinders in <i>Authors</i> : T. Hayat, <i>M. Khan</i> , M. Sajid and M. Ayub <i>Journal</i> : J. Porous Media 9, 709–722 (2006) USA	a porous medium
		(ISI Impact Factor = 0.493)
22. Hall effect on flows of an Oldroyd-B fluid through porous medium for cylindrical ge <i>Authors</i> : T. Hayat, M. Hussain and <i>M. Khan</i>		lindrical geometries
	Journal: Computers and Mathematics with Applications, 52, 269–282 (2)	006) UK . (ISI Impact Factor = 0.611)
2007		
23.	Partial slip effects on the oscillatory flows of a fractional Jeffrey fluid in <i>Author</i> : <i>M. Khan</i>	a porous medium
	<i>Journal</i> : J. Porous Media, $10, 4/3 - 488 (2007) USA$.	(ISI Impact Factor = 0.514)
24.	MHD transient flows in a channel of rectangular cross-section with porous medium <i>Authors</i> : <i>M. Khan</i> , C. Fetecau and T. Hayat	
	Journal. Flysics Letters A, 309 , $44 - 34 (2007)$ ivemerianas.	(ISI Impact Factor = 1.711)
25.	Numerical study of partial slip on the MHD flow of an Oldroyd 8-constant fluid	
	<i>Journal</i> : Computers and Mathematics with Applications, 53, 1088 – 1097	7 (2007) UK . (ISI Impact Factor = 0.720)

26.	Exact solution for the magnetohydrodynamic flows of an Oldroyd-B fluid through a porous medium <i>Authors: M. Khan</i> , S.B. Khan and T. Hayat <i>Journal:</i> J. Porous Media, 10, 391 – 399 (2007) <i>USA</i>	
	<i>Journal. J.</i> 1 01003 Wedia, 10, <i>391 - 399</i> (2007) 0511.	(ISI Impact Factor = 0.413)
27.	Transient oscillatory and constantly accelerated non-Newtonian flow in a <i>Authors</i> : <i>M. Khan</i> , Maryam Saleem, C. Fetecau and T. Hayat <i>Journal</i> : Int. J. Non-Linear Mechanics, 42, 1224 – 1239 (2007) <i>UK</i> .	porous medium
		(<i>ISI Impact Factor</i> = 1.249)
28.	The effect of the slip condition on flows of an Oldroyd 6-constant fluid <i>Authors</i> : T. Hayat, <i>M. Khan</i> and M. Ayub <i>Journal</i> : J. Computational and Applied Mathematics. 202, 402–413 (200)7) Netherlands
	(200	(ISI Impact Factor = 0.943)
29.	On the MHD flow of fractional generalized Burgers' fluid with modified <i>Authors</i> : T. Hayat, <i>M. Khan</i> and S. Asghar	Darcy's law
	<i>Journal</i> : Acta Mech. Sinica, 23, 237 – 201 (2007) Germany .	(ISI Impact Factor = 0.583)
30.	Nonlinear peristaltic flow of a non-Newtonian fluid under effect of a magnetic field in a planar channel	
	<i>Authors</i> : T. Hayat, <i>M. Khan</i> , A.M. Siddiqui and S. Asghar <i>Journal</i> : Commun. Nonlinear Sci. Numer. Simulation, 12, 910–919 (20)	07) Netherlands . (ISI Impact Factor = 0.000)
31.	The influence of Hall current on the rotating oscil[lating flows of an Oldr medium	royd-B fluid in a porous
	<i>Authors</i> : T. Hayat, S.B. Khan and <i>M. Khan</i> <i>Journal</i> : Non-Linear Dynamics, 47, 353–362 (2007) <i>Netherlands</i> .	
		(<i>ISI Impact Factor</i> = 1.045)
32.	Effects of Hall current on flows of a Burgers' fluid through a porous med <i>Authors</i> : T. Hayat, M. Hussian and <i>M. Khan</i>	lium
	<i>Journal</i> . Transport in Forous (Vicula, 06, 247 – 205 (2007) USA.	(ISI Impact Factor = 1.012)
33.	Peristaltic transport of a third order fluid under the effect of a magnetic fi Authors: T.Hayat, Ambreen Afsar, M. Khan and S. Asghar	eld
	<i>Journal</i> : Computers and Mathematics with Applications, 53, 1074 – 1087	7 (2007) UK . (ISI Impact Factor = 0.720)
2008		
34.	Some exact solutions for fractional generalized Burgers' fluid in a porous	s space

 Authors: M. Khan and T. Hayat Journal: Nonlinear Analysis: Real World Applications, 09, 1952 – 1965 (2008) UK. (ISI Impact Factor = 1.778)
 35. Exact solutions of accelerated flows for a Burgers' fluid: I. The case γ < λ² / 4. Authors: M. Khan, S. Hyder Ali and C. Fetecau Journal: Applied Mathematics and Computation, 203, 881 – 894 (2008) USA.

(ISI Impact Factor = 0.961)

36.	Analytic solution for flow of Sisko fluid through a porous medium <i>Authors</i> : <i>M. Khan,</i> Z. Abbas and T. Hayat <i>Journal:</i> Transport in Porous Media, 71, 23 – 37 (2008) <i>USA</i> .	
		(ISI Impact Factor = 0.772)
37.	Slip effects on shearing flows in a porous medium <i>Authors</i> : <i>M. Khan</i> , T. Hayat and Y. Wang <i>Journal</i> : Acta Mech. Sinica, 24, 51 – 59 (2008) <i>Germany</i> .	
		(<i>ISI Impact Factor</i> = 0.764)
38.	MHD flows of a second grade fluid between two side walls perpendicular medium Authors: M. Khan S. Hyder Ali C. Fetecau and T. Hayat	to a plate through a porous
	<i>Journal</i> : Int. J. Non-Linear Mechanics, 43, $302 - 319$ (2008) UK.	(ISI Impact Factor = 1.296)
39.	Exact solutions of starting flows for second grade fluid in a porous media <i>Authors:</i> M. Khan , Ehnber Naheed, C. Fetecau and T. Hayat <i>Journal</i> : Int. J. Non-Linear Mechanics, 43, 868 – 879 (2008) UK .	um
		(ISI Impact Factor = 1.296)
40.	Hall and heat transfer effects on the steady flow of a generalized Burgers' pull of eccentric rotating disks <i>Authors</i> : T. Hayat, K. Maqbool and <i>M. Khan Journal</i> : Nonlinear Dynamics, 51, 267 – 276 (2008) <i>Netherlands</i> .	' fluid induced by sudden
		(ISI Impact Factor = 1.295)
41.	Exact solution for rotating flows of a generalized Burgers' fluid in a poro <i>Authors</i> : T. Hayat, S.B. Khan and <i>M. Khan Journal</i> : Applied Mathematical Modelling, 32, 749 – 760 (2008) <i>USA</i> .	us space
		(ISI Impact Factor = 0.931)
42.	Influence of Hall current on rotating flow of a Burgers' fluid through a po Authors: T. Hayat, S.B. Khan and M. Khan	prous space
	<i>Journal</i> . J. 1 ofous Media, 11, 277 – 287 (2008) USA.	(ISI Impact Factor = 0.612)
43.	Unsteady flow of an Oldroyd-B fluid induced by the impulsive motion of walls perpendicular to the plate Authors: C. Fetecau, T. Hayat, M. Khan and Corina Fetecau <i>Journal</i> : Acta Mechanica, 198, 21 – 33 (2008) Austria	a plate between two side
	<i>504/141.</i> (You Woonaniou, 196, 21 - 55 (2000)/1 4.50 a.	(ISI Impact Factor = 1.297)
44.	Decay of a potential vortex in a generalized Oldroyd-B fluid <i>Authors</i> : Corina Fetecau, C. Fetecau, <i>M. Khan</i> and D. Vieru <i>Journal</i> : Applied Mathematics and Computation, 205, 497–506 (2008) <i>U</i>	VSA.
		(151 impact r actor = 0.901)
2009		

45. The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model *Author: M. Khan Journal*: Nonlinear Analysis: Real World Applications, 10, 3190 – 3195 (2009) UK.

(ISI Impact Factor = 2.381)

46.	Exact solutions for the accelerated flows of a generalized second grade fluid between two side walls perpendicular to the plate <i>Author</i> : <i>M. Khan</i>		
	Journal: J. Porous Media, 12 (9), 919 – 926 (2009) USA.		
	(ISI Impact Fac	tor = 0.684)	
47.	Flow of a generalized second grade fluid between two side walls perpendicular to a plate fractional derivative model <i>Authors: M. Khan</i> and S. Wang <i>Journal:</i> Nonlinear Analysis: Real World Applications, 10, 203 – 208 (2009) <i>UK</i> .	with	
	(ISI Impact Fac	<i>tor</i> = 2.381)	
48.	Hall effect on the pipe flow of a Burgers' fluid: an exact solution <i>Authors:</i> M. Khan , S. Asghar and T. Hayat <i>Journal:</i> Nonlinear Analysis: Real World Applications, 10, 974 – 979 (2009) UK . (ISI Impact Fac	tor = 2.381)	
49.	Some accelerated flows for a generalized Oldroyd-B fluid Authors: M. Khan , S. Hyder Ali and Haitao Qi		
	Journal: Nonlinear Analysis: Real World Applications, 10, 980 – 991 (2009) UK. (ISI Impact Fac	tor = 2.381)	
50.	Exact solutions of starting flows for a fractional Burgers' fluid between coaxial cylinders <i>Authors</i> : <i>M. Khan</i> , S. Hyder Ali and Haitao Qi		
	Journal: Nonlinear Analysis: Real world Applications, 10, 1775 – 1783 (2009) UK. (ISI Impact Fac	tor = 2.381)	
51.	On accelerated flows of a viscoelastic fluid with the fractional Burgers' model <i>Authors</i> : M. Khan , S. Hyder Ali and Haitao Qi <i>Journal:</i> Nonlinear Analysis: Real World Applications 10, 2286 – 2296 (2009) UK		
	(ISI Impact Fac	tor = 2.381)	
52.	Exact solutions for some oscillating flows of a second grade fluid with a fractional deriva <i>Authors</i> : M. Khan , S. Hyder Ali and Haitao Qi <i>Journal</i> : Math. Comput. Modell. 49, 1519 – 1530 (2009) UK	tive model	
	(ISI Impact Fac	<i>tor</i> = 1.103)	
53.	Exact solutions of accelerated flows for a Burgers' fluid: II. The cases $\gamma = \lambda^2 / 4$ and <i>Authors</i> : <i>M. Khan</i> , S. Hyder Ali and C. Fetecau	$\gamma > \lambda^2 / 4$	
	Journal: Z. Angew. Math. Phys., 60, 701 – 722 (2009) Switzerland. (ISI Impact Fac	tor = 1.092)	
54.	New exact solutions for magnetohydrodynamic flows of an Oldroyd-B fluid <i>Authors: M. Khan</i> , Sidra Mahmood and C. Fetecau		
	Journal: Z. Angew. Math. Phys., 60, 1206 – 1219 (2009) Switzerland. (ISI Impact Fac	tor = 1.092)	
55.	Heat transfer analysis and MHD flow of a non-Newtonian fluid through a porous medium the wall <i>Authors</i> : <i>M. Khan</i> , S. Rahman and T. Hayat	with slip at	
	Journal: J. Porous Media, 12, 277 – 287 (2009) USA. (ISI Impact Fac	tor = 0.684)	
56.	Exact solution of oscillatory rotating flows of a generalized Oldroyd-B fluid through poro <i>Authors:</i> M. Khan, R. Ellahi and T. Hayat	us medium	

Journal: J. Porous Media, 12 (8), 777 – 788 (2009) USA.

(ISI Impact Factor = 0.684) 57. Decay of potential vortex for a viscoelastic fluid with fractional Maxwell model Author: M. Khan, S. Hyder Ali, C. Fetecau and Haitao Qi Journal: Applied Mathematical Modelling, 33, 2526 – 2533 (2009) USA. (ISI Impact Factor = 1.375) 58. Exact solutions for a viscoelastic fluid with the generalized Oldroyd-B model Authors: S. Hyder Ali, M. Khan, and Haitao Qi Journal: Nonlinear Analysis: Real World Applications, 10, 2590 – 2599 (2009) UK. (ISI Impact Factor = 2.381) 59. Reduction and solutions for MHD flow of a Sisko fluid in a porous medium Authors: H. M. Mamboundou, M. Khan, T. Hayat and F.M. Mahomed Journal: J. Porous Media, 12 (7), 695 – 714 (2009) USA. (ISI Impact Factor = 0.684) 2010 60. On heat transfer analysis of a magnetohydrodynamic Sisko fluid through a porous medium Authors: M. Khan and J. Farooq Journal: J. Porous Media, 13 (3), 287 – 294 (2010) USA. (ISI Impact Factor = 0.707) 61. Steady flow and heat transfer of a Sisko fluid in annular pipe Authors: M. Khan, M. Munawar and S. Abbasbandy Journal: Int. J. Heat and Mass Transfer, 53, 1290 - 1297 (2010) UK. (ISI Impact Factor = 1.899) 62. On exact solutions of Stokes second problem for a Burgers' fluid, I. The case $\gamma < \lambda^2/4$ Authors: M. Khan, Asia Anjum and C. Fetecau Journal: Z. Angew. Math. Phys., 61, 697 - 720 (2010) Switzerland. (*ISI Impact Factor* = **1.290**) 63. Magnetohydrodynamic flow of a Sisko fluid in annular pipe: A numerical study Author: M. Khan, Q. Abbas and K. Duru Journal: Int. J. Numer. Methods Fluids, 62, 1169 – 1180 (2010) UK. (ISI Impact Factor = 1.060) On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid 64. Authors: M. Khan, Asia Anjum, Haitao Qi and C. Fetecau Journal: Z. Angew. Math. Phys., 61, 133 - 145 (2010) Switzerland. (*ISI Impact Factor* = **1.290**) 65. Exact solutions for some oscillating motions of a fractional Burgers' fluid Authors: M. Khan, Asia Anjum, C. Fetecau and Haitao Qi Journal: Math. Comput. Modell., 51, 682 - 692 (2010) UK. (ISI Impact Factor = 1.066) 66. Exact solutions for the unsteady flow of a Burgers' fluid between two side walls perpendicular to the plate Author: M. Khan, Rabia Malik, Corina Fetecau and C. Fetecau Journal: Chem. Eng. Commun., 197, 1367 - 1386 (2010) USA.

(*ISI Impact Factor* = **0.913**)

- 67. Energetic balance for the flow induced by a constantly accelerating plate in a second grade fluid *Authors*: Corina Fetecau, *M. Khan* and C. Fetecau *Journal*: Engineering, 02, 466 470 (2010) *USA*.
- Oscillatory rotating flows of a fractional Jeffrey fluid filling a porous space *Authors:* T. Hayat, *M. Khan*, K. Fakhar and N. Amin *Journal:* J. Porous Media, 13 (1), 29 38 (2010) USA.

(*ISI Impact Factor* = **0.707**)

69. Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a suddenly moved plate between two side walls perpendicular to the plate *Authors*: Corina Fetecau, *M. Khan*, C. Fetecau and Haitao Qi *Journal*: Proceedings of the Romanian Academy Series A-Math. Phys., 11 (1), 3 – 10 (2010) *Romania*.

(*ISI Impact Factor* = **0.149**)

A note on longitudinal oscillations of a generalized Burgers' fluid in cylindrical domains *Authors*: Corina Fetecau, T. Hayat, *M. Khan* and C. Fetecau *Journal*: J. Non-Newtonian Fluid Mech., 165, 350 – 361 (2010) *Netherlands*.

(ISI Impact Factor = 1.572)

2011

71.	MHD flow of an Oldroyd-B fluid through a porous space induced by tooth pulses <i>Authors: M. Khan</i> and Zeeshan	
	Journal: Chinese Physics Letters, 28 (8), 084701 (2011) UK.	
	(ISI Impact Factor = 0.731)	
72.	Heat transfer analysis of the steady flow of an Oldroyd 8-constant fluid due to a suddenly moved plate	
	Author: M. Khan, Qurrat-ul-Ain and M. Sajid	
	Journal: Commun. Nonlinear Sci. Numer. Simulation, 16, 1347 – 1355 (2011) Netherlands. (ISI Impact Factor = 2.806)	
73.	On exact solutions of Stokes second problem for a Burgers' fluid, II. The cases $\gamma = \lambda^2 / 4$ and $\gamma > \lambda^2 / 4$	
	Authors: M. Khan, Asia Anjum and C. Fetecau Journal: Z. Angew. Math. Phys., 62, 749 – 759 (2011) Switzerland.	
	(ISI Impact Factor = 0.951)	
74.	Analytic solutions for MHD flows of an Oldroyd-B fluid between two side walls perpendicular to the	

Analytic solutions for NITD hows of an Oldroyd-D huld between two side wans perpendicular to the plate
 Author: M. Khan, Rabia Malik and Asia Anjum
 Journal: Chem. Eng. Commun., 198, 1415 – 1434 (2011) USA.

(*ISI Impact Factor* = **0.946**)

- 75. Some unsteady flows of a Jeffrey fluid between two side walls over a plane wall *Authors: M. Khan*, Faiza Iftikhar and Asia Anjum *Journal*: Zeitschrift für Naturforschung A (ZNA) 66a, 745 752 (2011) *Germany*. (ISI Impact Factor = 0.940)
- 76. Starting solution for some oscillatory rotating flows of MHD second grade fluid through porous space Authors: M. Khan, Tanzeela Safdar and M. Azram Journal: J. Porous Media, 14(8), 723 734 (2011) USA.

(*ISI Impact Factor* = **0.516**)

77.	Closed form solutions for MHD flow of a second grade fluid through porous space <i>Author</i> : <i>M. Khan</i> , Kaleem Iqbal and M. Azram		
	Journal: Special Topics & Reviews in Porous Media, 02(2), 125 – 132 (2	2011) USA . (ISI Impact Factor = 0.000)	
78.	Erratum to: Unsteady flow of an Oldroyd-B fluid induced by the impulse between two side walls perpendicular to the plate <i>Authors</i> : C. Fetecau, T. Hayat, <i>M. Khan</i> and Corina Fetecau <i>Journal</i> : Acta Mechanica, 216, 359 – 361 (2011) <i>Austria</i> .	sive motion of a plate	
2012			
79.	Falkner-Skan boundary layer flow of a Sisko fluid <i>Authors: M. Khan</i> and A. Shahzad		
	Journal: Zeitschrift für Naturforschung A (ZNA) 67a, 469 – 478 (2012)	Germany. (ISI Impact Factor = 1.363)	
80.	On axisymmetric flow of Sisko fluid over a radially stretching sheet <i>Authors: M. Khan</i> and A. Shahzad		
	<i>Journal</i> : Int. J. Non-Linear Mechanics, 47, 999 – 1007 (2012) UK.	(ISI Impact Factor = 1.345)	
81.	On some oscillating motions of a Burgers' fluid Authors: M. Khan and A. Anjum Journal: Int. J. Physical Sciences, 7 (44), 5834 – 5851 (2012) USA .		
		(<i>ISI Impact Factor</i> = 0.000)	
82.	Steady flow and heat transfer of a MHD Sisko fluid through porous media <i>Authors: M. Khan</i> , Naila Shaheen and A. Shahzad <i>Journal:</i> Int J. Numer. Methods Fluids 69, 1907 – 1922 (2012) <i>UK</i>	um in annular pipe	
		(ISI Impact Factor = 1.352)	
83.	On exact solutions of Stokes second problem for MHD Oldroyd-B fluid <i>Authors: M. Khan</i> , Misbah Arshad and Asia Anjum		
	Journal: Nuclear Engineering and Design, 243, 20 – 32 (2012) Switzeria	nd. (ISI Impact Factor = 0.805)	
84. On the exact solutions for oscillating flow of a MHD second <i>Authors: M. Khan</i> , Hashim and C. Feteacu		through porous media	
	Journal: Special Topics & Reviews in Porous Media, 3(1), 13 – 22 (2012	2) USA . (ISI Impact Factor = 0.000)	
85.	Algebraic linearization criteria for systems of second-order ordinary diffe Authors: M. Ayub, M. Khan and F.M. Mahomed	erential equations	
	<i>Journal</i> . Non-Linear Dynamics, 67, 2035 – 2002 (2012) <i>Neinerianas</i> .	(ISI Impact Factor = 3.009)	
86.	Starting solutions for oscillating motions of an Oldroyd-B fluid over a pla <i>Authors:</i> Asia Anjum, M. Ayub and <i>M. Khan</i>	ane wall	
	Journal: Commun. Nonlinear Sci. Numer. Simulat., 17, 472 – 482 (2012)) Netherlands. (ISI Impact Factor = 2.773)	
87.	On the exact solution for axisymmetric flow and heat transfer over a non- sheet	-linear radially stretching	
	Authors: A. Shahzad, R. Ali and <i>M. Khan</i> Journal: Chinese Physics Letters, 29 (8), 084705 (2012) UK.		

 Flow of a fractional Oldroyd-B fluid over a plane wall that applies a time-dependent shear to the fluid *Authors:* C. Fetecau, N. Shahid and *M. Khan Journal*: AIP Conf. Proc. 1450, 65 – 76 (2012) USA.

2013

89.	Stokes' first problem for an MHD Burgers fluid Author: Masood Khan	
	Journal: Commun. Theor. Phys., 59, 99 – 104 (2013) UK.	(ISI Impact Factor = 1.049)
90.	On stagnation point flow of Sisko fluid over a stretching sheet <i>Authors: M. Khan</i> and A. Shahzad	
	<i>Journal</i> : Meccanica, 48, 2391 – 2400 (2013) <i>Netherlands</i> .	(ISI Impact Factor = 1.815)
91.	On boundary layer flow of a Sisko fluid over a stretching sheet <i>Authors: M. Khan</i> and A. Shahzad	
	<i>Journal</i> : Quaestiones Mathematicae, 36, 137 – 151 (2013) <i>South Africa</i> .	(ISI Impact Factor = 0.451)
92.	MHD Falkner-Skan flow with mixed convection and convective boundar <i>Authors: M. Khan</i> , R. Ali and A. Shahzad	y conditions
	<i>Journal</i> : Walailak J. Sci. & Tech, 10(5), 517 – 529 (2013) <i>Thailand</i> .	(ISI Impact Factor = 0.000)
93.	Second-order systems of ODEs admitting three-dimensional Lie and inter Authors: M. Ayub, M. Khan and F.M. Mahomed	grability
	<i>Journal</i> . J. Appl. Main., Vol. 2015, Attele 1D 147/21, 15 pages USA.	(ISI Impact Factor = 0.720)
94.	Symmetries of second-order systems of ODEs and integrability <i>Authors:</i> M. Ayub, F.M. Mahomed, <i>M. Khan</i> and M.N. Qureshi <i>Journal:</i> Non-Linear Dynamics, 74, 969 – 989 (2013) <i>Netherlands</i> .	
		(ISI Impact Factor = 2.419)
95.	Simulation of incompressible flow in two sided lid driven cavity using up <i>Authors:</i> A. Munir, M. Razwan, <i>M. Khan</i> and A. Shah <i>Journal:</i> CFD Letters. 5 (3), 57 – 66 (2013) <i>Malaysia</i> .	owind compact scheme
		(ISI Impact Factor = 0.000)
96.	Radiation effects on the thermal boundary layer flow of a micropolar flui stretching sheet	d towards a permeable
	<i>Authors:</i> M. Hussain, Mehwish Ashraf, S. Nadeem and <i>M. Khan</i> <i>Journal</i> : J. Franklin InstEng. Appl. Math., 350, 194 – 210 (2013) USA.	(ISI Impact Factor = 2.260)
		(

2014

97. Starting solution for an MHD Oldroyd-B fluid flow through porous space *Authors: M. Khan* and Aqsa Ijaz *Journal*: J. Porous Media, 17 (9), 797 – 809 (2014) USA.

(ISI Impact Factor = 0.807) 98. Analytic approximate solutions for time-dependent flow and heat transfer of a Sisko fluid Authors: M. Khan, A. Shahzad, A. Anjum and F.M. Mahomed Journal: Int. J. Numer. Methods Heat and Fluid Flow, 24 (5), 1005 - 1019 (2014) UK. (ISI Impact Factor = 1.399) 99. Influence of Hall current on oscillatory Couette flow in the presence of an inclined magnetic field through porous medium Authors: M. Khan, Saira Saeed, C. Fetecau and M. Azram Journal: J. Porous Media, 17 (1), 81 – 92 (2014) USA. (ISI Impact Factor = 0.807) 100. Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption Authors: W.A. Khan, M. Khan and Rabia Malik Journal: PLoS ONE, 9 (8): e105107. doi:10.1371/journal.pone.0105107 (2014) USA. (ISI Impact Factor = 3.234) 101. Flow and heat transfer in Sisko fluid with convective boundary condition Authors: Rabia Malik, M. Khan, A. Munir and W.A. Khan Journal: PLoS ONE, 9 (10): e107989. doi:10.1371/journal.pone.0107989 (2014) USA. (ISI Impact Factor = 3.234) 102. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet Authors: A. Munir, A. Shahzad and M. Khan Journal: PLoS ONE, 9 (6): e100056. doi:10.1371/journal.pone.0100056 (2014) USA. (ISI Impact Factor = 3.234) 2015 103. Flow and heat transfer to modified second grade fluid over a non-linear stretching sheet Authors: M. Khan and Masood ur Raham Journal: AIP Advances, 5, 087157 (2015); doi: 10-1063/1.4929480, USA. (ISI Impact Factor = 1.444) 104. Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet Authors: M. Khan and W.A. Khan Journal: AIP Advances, 5, 107138 (2015); doi: 10.1063/1.4935043, USA. (ISI Impact Factor = 1.444) 105.

- 105. Forced convective heat transfer to Sisko fluid flow past a stretching cylinder *Authors: M. Khan* and R. Malik *Journal*: AIP Advances, 5, 127202 (2015); doi: 10.1063/1.4937346, USA. (ISI Impact Factor = 1.444)
- Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet *Authors: M. Khan* and Hashim *Journal*: AIP Advances, 5, 107203 (2015); doi: 10.1063/1.4932627, USA. (ISI Impact Factor = 1.444)
- 107. Mixed convective heat transfer to Sisko fluid over a radially stretching sheet in the presence of convective boundary conditions *Authors: M. Khan*, R. Malik and A. Munir *Journal*: AIP Advances, 5, 087178 (2015) doi: 10-1063/1.4929832, USA.

(ISI Impact Factor = 1.444) Exact solutions for MHD second Stokes flow of generalized Burgers fluid Authors: M. Khan, Rabia Malik and Asia Anjum Journal: Appl. Math. Mech. (English Edition), 36 (2), 211 – 224 (2015) USA. (ISI Impact Factor = 0.922) Flow and heat transfer to Sisko nanofluid over a nonlinear stretching sheet Authors: M. Khan, R. Malik, A. Munir and W.A. Khan Journal: PLoS ONE, 10 (5): e025683. doi:10.1371/journal.pone.0125683 (2015) USA. (ISI Impact Factor = 3.057) Self-similar unsteady flow of a Sisko fluid in a cylindrical tube undergoing translation Authors: M. Khan, S. Abelman, P.D. Mason and F.M. Mahomed Journal: Math. Probl. Eng., Volume 2015, Article ID 135424, 14 pages (2015) USA. (*ISI Impact Factor* = **0.644**) MHD flow and heat transfer of a viscous fluid over a radially stretching power-law sheet with suction/injection in a porous medium Authors: M. Khan, A. Munir, A. Shahzad and A. Shah Journal: J. Appl. Mech. Tech. Phys., 56 (2), 231 – 240 (2015) USA. (ISI Impact Factor = 0.274) Convective flow of Sisko fluid over a bidirectional stretching surface Authors: A. Munir, A. Shahzad and M. Khan Journal: PLoS ONE, 10 (6): e0130342. doi:10.1371/journal.pone.0130342 (2015) USA. (ISI Impact Factor = 3.057) Mixed convection heat transfer in Sisko fluid with viscous dissipation: Effects of assisting and opposing buoyancy Authors: A. Munir, A. Shahzad and M. Khan, Journal: Chem. Eng. Res. Des., 97, 120 - 127 (2015) UK. (ISI Impact Factor = 2.525) Heat transfer for MHD second grade fluid flow over a porous nonlinear radially stretching sheet Authors: A. Munir, A. Shahzad and M. Khan Journal: Walailak J. Sci. & Tech., 12 (9), 763 - 773 (2015) Thailand. (ISI Impact Factor = 0.000) A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet Authors: J. Ahmed, A. Shahzad, M. Khan and R. Ali Journal: AIP Advances, 5, 117117 (2015); doi: 10.1063/1.4935571, USA. (ISI Impact Factor = 1.444) 2016

116. Flow and heat transfer to Sisko fluid with partial slip Authors: M. Khan Journal: Canadian J. Physics, 94 (8), 724 - 730 (2016) Canada.

108.

109.

110.

111.

112.

113.

114.

115.

(*ISI Impact Factor* = **0.877**)

28/44

117. Forced convective heat transfer to Sisko nanofluid past a stretching cylinder in the presence of variable thermal conductivity Authors: M. Khan and R. Malik Journal: J. Molecular Liquids, 218, 1 – 7 (2016) Netherlands.

		(ISI Impact Factor = 3.648)
118.	Three-dimensional flow and heat transfer to Burgers fluid using Cattaneo <i>Authors: M. Khan</i> and W.A. Khan <i>Journal:</i> J. Molecular Liquids 221, 651 – 657 (2016) <i>Netherlands</i>	-Christov heat flux model
	<i>504/144. 5.</i> 1101000141 Elquids, 221, 051 057 (2010) 1001014445.	(ISI Impact Factor = 3.648)
119.	MHD boundary layer flow of a power-law nanofluid with new mass flux <i>Authors: M. Khan</i> and W.A. Khan	condition
	<i>Journal</i> : AIP Advances, 6, 025211 (2016); doi: 10.1065/1.4942201, USA	(ISI Impact Factor = 1.568)
120.	Unsteady boundary layer flow of Carreau fluid over a permeable stretchin <i>Authors: M. Khan</i> and M. Azam	ng surface
	<i>Journal</i> . Results in Physics, 0, 1106 – 1174 (2010) Ivener anas.	(ISI Impact Factor = 0.946)
121. Steady flow of Burgers' nanofluid over a stretching surface with heat generation/abso <i>Authors:</i> M. Khan and W.A. Khan		eration/absorption
	Journal: J. Braz. Soc. Mech. Sci. Eng., 38, 2359 – 2367 (2016) Brazil.	(ISI Impact Factor = 1.235)
122.	MHD stagnation-point flow of a Carreau fluid and heat transfer in the presence of convective boundary conditions Authors: M Khan Hashim and A S Alshomrani	
	Journal: PLoS ONE, 11 (6): e0157180. Doi:10.1371/journal.pone.015718	80 (2016) USA . (ISI Impact Factor = 2.806)
123. Non-linear radiative flow of three-dimensional Burgers nanofluid with new ma <i>Authors: M. Khan</i> , W.A. Khan and A.S. Alshomrani		w mass flux effect
	<i>Journal</i> . Int. J. Heat Wass Hansi., 101, 570 – 570 (2010) UK.	(ISI Impact Factor = 3.458)
124.	Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid p <i>Authors: M. Khan</i> , R. Malik and M. Hussain <i>Journal</i> : AIP Advances, 6, 055315 (2016); doi: 10.1063/1.4950946, USA	ast a stretching cylinder 4.
		(ISI Impact Factor = 1.568)
125.	A note on exact solution for thermal radiative flow over a stretching/shrir boundary condition <i>Authors:</i> <i>M. Khan,</i> M. Rahman and M. Azram	king sheet with convective
	Journal: Walailak J. Sci. & Tech., 13 (5), 355 – 364 (2016) Thailand.	(ISI Impact Factor = 0.000)
126.	Magnetohydrodynamic flow of Carreau fluid over a convectively heated a nonlinear radiation	surface in the presence of
	<i>Autnors: M. Knan</i> , Hasnim, M. Hussain and M. Azam <i>Journal</i> : J. Magn. Magn. Mater., 412, 63 – 68 (2016) <i>Netherlands</i> .	(ISI Impact Factor = 2.630)
127.	Exact solution of an electroosmotic flow for generalized Burgers fluid in <i>Authors: M. Khan</i> , Asma Farooq, W.A. Khan and M. Hussain	cylindrical domain
	Journal: Results in Physics, 6, 933 – 939 (2016) Netherlands.	(ISI Impact Factor = 0.946)

128. MHD flow and heat transfer of Sisko fluid over a radially stretching sheet with convective boundary conditions

Authors: M. Khan, R. Malik, A. Munir and A. Shahzad Journal: J. Braz. Soc. Mech. Sci. Eng., 38, 1279 – 1289 (2016) Brazil.

(ISI Impact Factor = 1.235)

- 129. A revised model to analyze the heat and mass transfer mechanisms in the flow of Carreau nanofluids *Authors*: Hashim and *M. Khan Journal*: Int. J. Heat Mass Transf., 103, 291 297 (2016) UK. (ISI Impact Factor = 3.458)
- 130. Impact of therrmophoresis particle deposition on three-dimensional radiative flow of Burgers fluid Authors: W.A. Khan and M. Khan Journal: Results in Physics, 6, 829 – 836 (2016) Netherlands.

(ISI Impact Factor = **0.946**)

Cattaneo-Christov heat flux model for Sisko fluid flow past a permeable non-linearly stretching cylinder
 Authors: R. Malik, *M. Khan* and M. Mushtaq
 Journal: J. Molecular Liquids, 222, 430 – 434 (2016) *Netherlands*.

(ISI Impact Factor = 3.648)

132. Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: Applications of non-Fourier's heat and non-Fick's mass flux models *Authors:* W.A. Khan, *M. Khan* and A.S. Alshomrani *Journal*: J. Molecular Liquids, 223, 1039 – 1047 (2016) *Netherlands*.

(*ISI Impact Factor* = **3.648**)

 Mixed convection heat transfer to modified second grade fluid in the presence of thermal radiation Authors: M. Raham, M. Manzur and M. Khan Journal: J. Molecular Liquids, 223, 217 – 223 (2016) Netherlands.

(*ISI Impact Factor* = **3.648**)

- Corrigendum to "Cattaneo-Christov heat flux model for the Sisko fluid flow past a permable nonlinearly stretching cylinder" [J, Mol. Liq. 222 (2016) 430-434] *Authors:* R. Malik, *M. Khan* and M. Mushtaq *Journal*: J. Molecular Liquids, 224, 246 – 246 (2016) *Netherlands*.
- 135. Numerical investigation of generalized Fourier's and Fick's laws for Sisko fluid flow Authors: W.A. Khan, M. Khan, A.S. Alshomrani and L. Ahmad Journal: J. Molecular Liquids, 224, 1016 – 1021 (2016) Netherlands.

(*ISI Impact Factor* = **3.648**)

- 136. Convective flow of Sisko fluid over a wedge with viscous dissipation *Authors:* A. Munir, A. Shahzad and *M. Khan Journal:* J. Braz. Soc. Mech. Sci. Eng., 38, 581 587 (2016) *Brazil*. (ISI Impact Factor = 1.235)
- 137. Assessment on characteristics of heterogeneous- homogeneous processes in three-dimensional flow of Burgers fluid *Authors:* W.A. Khan, A.S. Alshomrani and *M. Khan Journal*: Results in Physics, 6, 772 779 (2016) *Netherlands*.

(*ISI Impact Factor* = **0.946**)

138. On heat transfer analysis of axisymmetric flow of viscous fluid over a nonlinear radially stretching sheet
 Authors: A. Shahzad, J. Ahmed and *M. Khan Journal:* Alexandria Engineering J., 55, 2423 – 2429 (2016) *Egypt.*

Analytic and numerical solutions for axisymmetric flow with partial slip Authors: R. Ali, A. Shahzad, M. Khan and M. Ayub Journal: Engineering with Computers, 32 (1), 149-154 (2016) Germany.

(ISI Impact Factor = 4.229)

147. surface with thermal radiation: Dual solutions Authors: M. Khan. Hashim and A. Hafeez Journal: Chem. Eng. Sci., 173, 1 – 11 (2017) USA. (*ISI Impact Factor* = **3.306**)

139.

2017

140. Unsteady heat and mass transfer mechanisms in MHD Carreau nanofluid flow Authors: M. Khan and M. Azam Journal: J. Molecular Liquids, 225, 554 – 562 (2017) Netherlands. (ISI Impact Factor = 4.513) 141. Axisymmetric flow and heat transfer of Carreau fluid due to radially stretching sheet: A numerical study Authors: M. Khan and Hashim Journal: J. Appl. Mech. Tech. Phys., 58 (3), 410-418 (2017) Russia. (ISI Impact Factor = 0.643) Influence of non-linear thermal radiation on 2D unsteady flow of a Williamson fluid with heat 142. source/sink Authors: M. Khan and A. Hamid Journal: Results in Physics, 7, 3968 – 3975 (2017) Netherlands. (ISI Impact Factor = 2.147) 143. Effects of melting and heat generation/absorption on unsteady Falkner-Skan flow of Carreau nanofluid over a wedge Authors: M. Khan, M. Azam and A.S. Alshomrani Journal: Int. J. Heat Mass Transf., 110, 437 – 446 (2017) UK. (ISI Impact Factor = 3.891) 144. On unsteady Falkner-Skan flow of MHD Carreau nanofluid past a static/moving wedge with convective surface condition Authors: M. Khan, M. Azam and A. Munir Journal: J. Molecular Liquids, 230, 48 - 58 (2017) Netherlands. (ISI Impact Factor = 4.513) 145. On unsteady heat and mass transfer in Carreau nanofluid flow over expanding or contracting cylinder with convective surface conditions Authors: M. Khan, M. Azam and A.S. Alshomrani Journal: J. Molecular Liquids, 231, 474 – 484 (2017) Netherlands. (ISI Impact Factor = 4.513) 146. Numerical assessment of solar energy aspects on 3D magneto-Carreau nanofluid: A revised proposed relation Authors: M. Khan, M. Iran and W.A. Khan Journal: Int. J. Hydrog. Energy, 42, 22054 - 22065 (2017) UK. A review on slip-flow and heat transfer performance of nanofluids from a permeable shrinking

(ISI Impact Factor = 0.000)

(ISI Impact Factor = 0.765)

148. Impact of nonlinear thermal radiation and gyrotactic microorganisms on the magneto-Burgers nanofluid Authors: M. Khan, M. Irfan and W.A. Khan Journal: Int. J. Mech. Sci., 130, 375 – 382 (2017) UK.

(*ISI Impact Factor* = **3.570**)

- 149. Impact of forced convective radiative heat and mass transfer mechanisms on 3D Carreau nanofluid: A numerical study *Authors: M. Khan*, M. Irfan and W.A. Khan *Journal*: Eur. Phys. J. Plus, 132 (12), Article No. 517, *doi*: 10.1140/epjp/i2017-11803-3 (2017) *Italy.* (*ISI Impact Factor = 2.240*)
- 150. Numerically framing the impact of radiation on magneto-nanoparticle for 3D Sisko fluid flow *Authors: M. Khan*, L. Ahmad and W.A. Khan *Journal*: J. Braz. Soc. Mech. Sci. Eng., 39, 4475 4487 (2017) *Brazil.* (ISI Impact Factor = 1.627)
- 151. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet Authors: M. Khan, M. Rahman and M. Manzur Journal: Results in Physics, 7, 878 – 889 (2017) Netherlands.

(*ISI Impact Factor* = **2.147**)

152. Unsteady slip flow of Carreau nanofluid over a wedge with nonlinear radiation and new mass flux condition *Authors: M. Khan*, M. Azam and A.S. Alshomrani *Journal*: Results in Physics, 7, 2261 – 2270 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

- 153. On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet *Authors: M. Khan*, M. Manzur and M. Rahman *Journal*: Results in Physics, 7, 3767 3772 (2017) *Netherlands*.
 (ISI Impact Factor = 2.147)
- 154. Boundary layer flow and heat transfer for a third grade fluid over a nonlinear radially stretching sheet *Authors: M. Khan, A. Munir and A. Shahzad Journal: Walailak J. Sci. & Tech.*, 14(2), 157 168 (2017) *Thailand*.

(*ISI Impact Factor* = **0.000**)

155. Modeling and simulation for 3D magneto Eyring-Powell nanomaterial subject to nonlinear thermal radiation and convective heating *Authors: M. Khan*, M. Irfan, W.A. Khan and L. Ahmad *Journal*: Results in Physics, 7, 1899 – 1906 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

156. A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation Authors: M. Khan, M. Irfan, W.A. Khan and A.S. Alshomrani Journal: Results in Physics, 7, 2692 – 2704 (2017) Netherlands.

(*ISI Impact Factor* = **2.147**)

157. A 3D Sisko fluid flow with Cattaneo-Christov heat flux model and heterogeneous-homogeneous reactions: A numerical study *Authors: M. Khan*, L. Ahmad, W.A. Khan, A.S. Alshomrani, A.K. Alzahrani and M.S. Alghamdi *Journal*: J. Molecular Liquids, 238, 19 – 26 (2017) *Netherlands*.

(*ISI Impact Factor* = **4.513**)

158. Critical values in flow patterns of magneto-Carreau fluid over a circular cylinder with diffusion species: multiple solutions

Authors: Hashim and *M. Khan Journal:* J. Taiwan Inst. Chemical Engineers, 77, 282 – 292 (2017) *Taiwan*.

(*ISI Impact Factor* = **3.849**)

159. On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet *Authors:* Hashim and *M. Khan Journal*: Results in Physics, 7, 310 – 319 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

- 160. Authors' response to the specious "Comment on the paper, On Cattaneo-Christov heat flux model for Carreau fluid flow overa slandering sheet, Hashim, Masood Khan, Results in Physics, 7 (2017) 310-319"
 Authors: Hashim and *M. Khan Journal*: Results in Physics, 7, 1799 1800 (2017) *Netherlands*.
- Unsteady radiative stagnation point flow of MHD Carreau nanofluid over expanding/contracting cylinder *Authors:* M. Azam, *M. Khan* and A.S. Alshomrani *Journal*: Int. J. Mech. Sci., 130, 64 – 73 (2017) UK.

(*ISI Impact Factor* = **3.570**)

162. Numerical simulation for flow and heat transfer to Carreau fluid with magnetic field effect: Dual nature study *Authors:* Hashim, *M. Khan* and A.S. Alshomrani *Journal*: J. Magn. Magn. Mater., 443, 13 – 21 (2017) *Netherlands*.

(*ISI Impact Factor* = **3.046**)

Numerical investigation of magneto-nanoparticles for unsteady 3D generalized Newtonian liquid flow *Authors:* L. Ahmed, *M. Khan* and W.A. Khan *Journal*: Eur. Phys. J. Plus, 132 (9), Article No. 373, *doi:*10.1140/epjp/i2017-11658-6 (2017) *Italy*.

(ISI Impact Factor = 2.240)

- 164. Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder *Authors:* Hashim, *M. Khan* and A.S. Alshomrani
 Journal: Eur. Phys. J. E, 40 (1), Article No. 8, *doi*:10.1140/epje/i2017-11495-6 (2017) *France*. (ISI Impact Factor = 1.802)
- 165. Effects of magnetic field and partial slip on unsteady axisymmetric flow of Carreau nanofluid over a radially stretching surface *Authors:* M. Azam, *M. Khan* and A.S. Alshomrani *Journal*: Results in Physics, 7, 2671 2682 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

166. Homogeneous-heterogeneous reactions in modified second grade fluid over a non-linear stretching sheet with Newtonian heating *Authors:* M. Rahman, *M. Khan* and M. Manzur *Journal*: Results in Physics, 7, 4364 – 4370 (2017) *Netherlands*.

(ISI Impact Factor = 2.147)

167. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids *Authors:* W.A. Khan, *M. Khan*, M. Irfan and A.S. Alshomrani *Journal*: Results in Physics, 7, 4025 – 4032 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

168. An analysis of Cattaneo-Christov double-diffusion model for Sisko fluid flow with velocity slip Authors: R. Malik, *M. Khan*, A. Shafiq, M. Mushtaq and M. Hussain Journal: Results in Physics, 7, 1232 – 1237 (2017) Netherlands.

(*ISI Impact Factor* = **2.147**)

169. Numerical analysis of unsteady 3D flow of Carreau nanofluid with variable thermal conductivity and heat source/sink *Authors:* M. Irfan, W.A. Khan and *M. Khan Journal*: Results in Physics, 7, 3315 – 3324 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

170. An improved heat conduction and mass diffusion models for rotating flow of an Oldroyd-B fluid *Authors:* W.A. Khan, M. Irfan and *M. Khan Journal*: Results in Physics, 7, 3583 – 3589 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

171. Consequences of non-Fourier's heat conduction relation and chemical processes for viscoelastic liquid
 Authors: A. Sohail, W.A. Khan, *M. Khan* and S.I.A. Shah
 Journal: Results in Physics, 7, 3281 – 3286 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

172. Homotopic solutions for unsteady second grade liquid utilizing non-Fourier double diffusion concept Authors: A. Sohail, W.A. Khan, *M. Khan* and S.I.A. Shah Journal: Results in Physics, 7, 2798 – 2803 (2017) Netherlands.

(*ISI Impact Factor* = **2.147**)

173. Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid Authors: W.A. Khan, M. Irfan, *M. Khan*, A.S. Alshomrani, A.K. Alzahrani and M.S. Alghamdi Journal: J. Molecular Liquids, 234, 201 – 208 (2017) *Netherlands*.

(*ISI Impact Factor* = **4.513**)

174. Thermally radiative convective flow of magnetic nanomaterial: A revised model Authors: A. Sohail, S.I.A. Shah, W.A. Khan and *M. Khan Journal*: Results in Physics, 7, 2439 – 2444 (2017) Netherlands.

(*ISI Impact Factor* = **2.147**)

175. Computational modeling on 2D magnetohydrodynamic flow of Sisko fluid over a time dependent stretching sheet *Authors:* T. Mahmood, A. Shahzad, Z. Iqbal, J. Ahmed and *M. Khan Journal*: Results in Physics, 7, 832 – 842 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

176. Combined effects of magnetohydrodyyynamics and radiation on nano Sisko fluid towards a nonlinear stretching sheet *Authors:* T. Mahmood, Z. Iqbal, J. Ahmed, A. Shahzad and *M. Khan Journal*: Results in Physics, 7, 2458 – 2469 (2017) *Netherlands*.

(*ISI Impact Factor* = **2.147**)

2018

177. Effects of multiple slip on flow of magneto-Carreau fluid along wedge with chemically reactive species
 Authors: M. Khan and Hashim
 Journal: Neural Computing and Applications, 30 (7), 2191 – 2203 (2017) USA.

178.	On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity <i>Authors: M. Khan</i> and H. Sardar <i>Journal:</i> Results in Physics 8, 516 – 523 (2018) <i>Netherlands</i>		
	(ISI Impact Factor = 2.147)		
179.	Heat generation/absorption and thermal radiation impacts on three-dimensional flow of Carreau fluid with convective heat transfer <i>Authors: M. Khan</i> , Humara Sardar and Hashim <i>Journal:</i> J. Molecular Liquids 272, 474 – 480 (2018) <i>Netherlands</i>		
	(ISI Impact Factor = 4.513)		
180.	On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface <i>Authors: M. Khan,</i> H. Sardar and M.M. Gulzar <i>Journal</i> : Results in Physics, 8, 524 – 531 (2018) <i>Netherlands</i> .		
	(ISI Impact Factor = 2.147)		
181.	Unsteady Sisko magneto-nanofluid flow with heat absorption and temperature dependent thermal conductivity: A 3D numerical study <i>Authors: M. Khan,</i> L. Ahmad and M.M. Gulzar <i>Journal</i> : Results in Physics, 8, 1092 – 1103 (2018) <i>Netherlands</i> .		
	(ISI Impact Factor = 2.147)		
182.	Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition <i>Authors: M. Khan</i> , M. Irfan and W.A. Khan		
	<i>Journal</i> : Results in Physics, 9, $851 - 857$ (2018) <i>Netherlands</i> . (ISI Impact Factor = 2.147)		
183.	Thermophysical properties of unsteady 3D flow of magneto-Carreau fluid in presence of chemical species: A numerical, approach <i>Authors:</i> <i>M. Khan</i> , M. Irfan and W.A. Khan		
	<i>Journal</i> : J. Braz. Soc. Mech. Sci. Eng., 40 (2), Article No. 108, <i>doi</i> :10.1007/s40430-018-0964-4 (2018) <i>Brazil</i> .		
	(ISI Impact Factor = 1.627)		
184.	Application of modified Fourier law in von Karman swirling flow of Maxwell fluid with chemically reactive species <i>Authors: M. Khan</i> , J. Ahmed and L. Ahmad <i>Journal</i> : J. Braz. Soc. Mech. Sci. Eng., 40 (12), Article No. 573, <i>doi</i> :10.1007/s40430-018-1490-0		
	(2018) Brazil. (ISI Impact Factor = 1.627)		
185.	Mathematical modeling and numerical computations of unsteady generalized Newtonian fluid flow with convective heat transfer <i>Authors:</i> <i>M. Khan</i> , L. Ahmad and W.A. Khan		
	Journal: J. Braz. Soc. Mech. Sci. Eng., 40 (3), Article No. 166, doi:10.1007/s40430-018-1070 (2018) Brazil.		
	(ISI Impact Factor = 1.627)		
186.	Chemically reactive and radiative von Karman swirling flow due to a rotating disk <i>Authors: M. Khan</i> , J. Ahmed and L. Ahmad <i>Journal</i> : Appl. Math. MechEngl. Ed., 39(9), 1295 – 1310 (2018) <i>USA</i> . <i>(ISI Impact Factor = 1.538)</i>		

187.	Numerical study of unsteady axisymmetric flow and heat transfer in Carreau fluid past a stretched surface <i>Authors: M. Khan</i> , M. Azam and A.S. Alshomrani <i>Laurnal:</i> Thermel Science 22 (GP) 2850 – 2860 (2018) Sarbia	
	<i>Journal</i> . Therman Science, 22 (0D), 2039 – 2009 (2010) Serou .	(ISI Impact Factor = 1.433)
188.	Numerical simulation of unsteady 3D magneto-Sisko fluid flow with non homogeneous-heterogeneous chemical reactions <i>Authors: M. Khan, L. Ahmed and M. Ayaz</i>	linear thermal radiation and
	Journal: Pramana - J. Phys., 91 (1), Article No. 13, doi: 10.100//s12043	(ISI Impact Factor = 0.699)
189.	On multiple solutions of non-Newtonian Carreau fluid flow over an inclin <i>Authors: M. Khan</i> , H. Sardar, M.M. Gulzar and A.S. Alshomrani <i>Journal</i> : Results in Physics, 8, 926 – 932 (2018) <i>Netherlands</i> .	ned shrinking sheet
		(ISI Impact Factor = 2.147)
190.	Simultaneous investigation of MHD and convective phenomena on time- nanofluid with variable properties: Dual solutions <i>Authors: M. Khan</i> , M. Irfan, L. Ahmad and W.A. Khan <i>Journal:</i> Physics Letters A 382, 2334 – 2342 (2018) <i>Netherlands</i>	dependent flow of Carreau
	<i>Journal</i> . 1 hysics Letters 11, 302, 255 1 25 12 (2010) 1 (entertainus).	(ISI Impact Factor = 1.863)
191.	Aspects of improved heat conduction relation and chemical processes on 3D Carreau fluid flow <i>Authors:</i> <i>M. Khan</i> , M. Irfan, W.A. Khan and M. Avaz	
	Journal: Pramana-J. Phys., 91 (1), Article No. 14, doi:10.1007/s12043-	018-1579-0 (2018) India . (ISI Impact Factor = 0.699)
192. Impact of heat transfer analysis on Carreau fluid flow past a stati Authors: Hashim and M. Khan		g wedge
	Journal: Thermal Science, 22 (2), 809 – 820 (2018) Serbia.	(ISI Impact Factor = 1.433)
193.	Numerical study of homogeneous-heterogeneous reactions in Sisko fluid cylinder	flow past a stretching
	<i>Journal</i> : Results in Physics, 8, 64 – 70 (2018) <i>Netherlands</i> .	
		(<i>ISI Impact Factor</i> = 2.147)
194.	Numerical investigation on time-dependent flow of Williamson nanofluic transfer characteristics past a wedge geometry <i>Authors</i> : Hashim, <i>M. Khan</i> and A. Hamid	l along with heat and mass
	<i>Journal</i> : Int. J. Heat Mass Trans1., 118, 480 – 491 (2018) UK.	(ISI Impact Factor = 3.891)
195.	Mixed convection heat transfer to Cross fluid with thermal radiation: Effe and opposing flows <i>Authors:</i> M. Manzur, <i>M. Khan</i> and M. Rahman <i>Journal</i> : Int. J. Mech. Sci., 138-139, 515 – 523 (2018) <i>UK</i> .	ects of buoyancy assisting
		(<i>ISI Impact Factor</i> = 3.570)
196.	Interaction between chemical species and generalized Fourier's law on 3I variable thermal conductivity and heat sink/source: A numerical approach <i>Authors:</i> M. Irfan, <i>M. Khan</i> , and W.A. Khan <i>Journal</i> : Results in Physics, 10, 107 – 117 (2018) <i>Netherlands</i> .	D flow of Carreau fluid with

(ISI Impact Factor = 2.147)

197.	Boundary layer flow and heat transfer of a modified second grade nanofluid with new mass flux condition <i>Authors:</i> M. Rehman, <i>M. Khan</i> and M. Manzur <i>Journal</i> : Results in Physics, 10, 594 – 600 (2018) <i>Netherlands</i> . <i>(ISI Impact Factor = 2.14)</i>	17)
198.	Behavior of stratifications and convective phenomena in mixed convective flow of 3D Carreau nanofluid with radiative heat flux <i>Authors:</i> M. Irfan, <i>M. Khan</i> and W.A. Khan <i>Journal:</i> J. Braz. Soc. Mech. Sci. Eng., 40 (11), Article No. 521, <i>doi:</i> 10.1007/s40430-018-1429-5 (2018) <i>Brazil.</i>	27)
199.	On model for three-dimensional Carreau fluid flow with Cattaneo-Christov double diffusion and variable conductivity: A numerical approach <i>Authors:</i> M. Irfan, <i>M. Khan</i> and W.A. Khan <i>Journal</i> : J. Braz. Soc. Mech. Sci. Eng., 42 (12), Article No. 577, <i>doi:</i> 10.1007/s40430-018-1498-5 (2018) <i>Brazil</i> .	,,
	(ISI Impact Factor = 1.6 2	:7)
200.	Stability analysis in the transient flow of Carreau fluid with non-linear radiative heat transfer and nanomaterials: Critical points <i>Authors:</i> Hashim, <i>M. Khan</i> , Sherjeel and Umair Khan <i>Journal</i> : J. Molecular Liquids, 272, 787 – 800 (2018) <i>Netherlands</i> . <i>(ISI Impact Factor = 4.51)</i>	3)
201.	Investigation of dual solutions in flow of a non-Newtonian fluid with homogeneous-heterogeneous reactions: Critical points <i>Authors:</i> Hashim, <i>M. Khan</i> , A.S. Alshomrani and R.U. Haq <i>Journal</i> : Eur. J. Mech. B-Fluids, 68, 30 – 38 (2018) <i>Netherlands</i> .	
	(ISI Impact Factor = 1 .98	(4)
202.	Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport <i>Authors:</i> M. Iran, <i>M. Khan</i> , W.A. Khan and M. Ayaz <i>Journal</i> : Physics Letters A, 382, 1992 – 2002 (2018) <i>Netherlands</i> .	
	(ISI Impact Factor = 1.86	3)
203.	Thermal and solutal stratifications in flow of Oldroyd-B nanofluid with variable conductivity <i>Authors:</i> M. Irfan, <i>M. Khan</i> , W.A. Khan and M. Sajid <i>Journal</i> : Appl. Phys. A-Mater. Sci. Process., 124 (10), Article No. 674, <i>doi</i> :10.1007/s00339-018-2086 2 (2018) <i>USA</i>	
	(ISI Impact Factor = 1.60)	4)
204.	Unsteady mixed convective flow of Williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field <i>Authors:</i> Hashim, A. Hamid and <i>M. Khan Journal</i> : J. Molecular Liquids, 260, 436 – 446 (2018) <i>Netherlands</i> .	
	(ISI Impact Factor = 4.5)	3)
205.	Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanofluid <i>Authors:</i> A. Hamid, Hashim and <i>M. Khan Journal:</i> J. Molecular Liquids, 262, 435 – 442 (2018) <i>Netherlands</i> .	n
	(ISI Impact Factor = 4.5)	3)

- 206. Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-shaped geometry *Authors:* A. Hameed, Hashim and *M. Khan Journal*: Results in Physics, 9, 479 485 (2018) *Netherlands*.
 (ISI Impact Factor = 2.147)
- 207. Unsteady stagnation-point flow of Williamson fluid generated by stretching/shrinking sheet with Ohmic heating
 Authors: A. Hamid, Hashim, *M. Khan* and A. Hafeez
 Journal: Int. J. Heat Mass Transf., 126, 933 940 (2018) UK.

(ISI Impact Factor = **3.891**)

208. Thermal radiation effects on Williamson fluid flow due to an expanding/contracting cylinder with nanomaterials: Dual solutions *Authors:* Hashim, A. Hamid, *M. Khan* and U. Khan *Journal*: Physics Letters A, 382, 1982 – 1991 (2018) *Netherlands*.

(ISI Impact Factor = 1.863)

209. Combined porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate
 Authors: C. Fetecau, R. Ellahi, *M. Khan* and N.A. Shah
 Journal: J. Porous Media, 21 (7), 607 – 622 (2018) USA.

(*ISI Impact Factor* = **1.061**)

- Multiple physical aspects during the flow and heat transfer analysis of Carreau fluid with nanoparticles *Authors:* Hashim, A. Hafeez, A.S. Alshomrani and *M. Khan Journal*: Scientific Reports, Vol. 8, Article No. 17402, *doi*:10.1038/s41598-018-35462-9 (2018 UK. (ISI Impact Factor = 4.122)
- Chemically reactive flow and heat transfer of magnetite Oldroyd-B nanofluid subject to stratifications *Authors:* A.S. Alshomrani, M. Irfan, A. Salem and *M. Khan Journal:* Applied Nanoscience, 8 (7), 1743 – 1754 (2018) Germany.

(*ISI Impact Factor* = **2.951**)

- 212. Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady 3D Eyring-Powell magneto-nanofluid flow *Authors:* W.A. Khan, A.S. Alshomrani, A.K. Alzahrani, *M. Khan* and M Irfan *Journal*: Pramana J. Phys., 91 (5), Article No. 63, *doi*:10.1007/s12043-018-1634-x (2018) *India*. (*ISI Impact Factor* = 0.699)
- 213. Significance of static-moving wedge for unsteady Falkner-Skan forced convective flow of MHD Cross fluid *Authors:* W.A. Khan, I. Haq, M. Ali, M. Shahzad, *M. Khan* and M. Irfan *Journal*: J. Braz. Soc. Mech. Sci. Eng., 40 (9), Article No. 470, *doi*:10.1007/s40430-018-1390-3 (2018) *Brazil*.

(*ISI Impact Factor* = **1.627**)

2019

214. On steady two-dimensional Carreau nanofluid flow in the presence of infinite shear rate viscosity *Authors: M. Khan* and H. Sardar *Journal*: Canadian J. Physics, 97 (4), 400 – 407 (2019) *Canada*.

(*ISI Impact Factor* = **0.983**)

Boundary layer flow and heat transfer of Cross fluid over a stretching sheet *Authors: M. Khan*, M. Manzur and M. Rahman *Journal*: Thermal Science, 23 (1), 307 – 318 (2019) *Serbia*.

(*ISI Impact Factor* = **1.433**)

- 216. Heat transfer enhancement for Maxwell nanofluid flow subject to convective heat transport *Authors: M. Khan*, M. Irfan and W.A. Khan *Journal*: Pramana-J. Phys., 92 (2), Article No. 17, *doi:*10.1007/s12043-018-1690-2 (2019) *India*. (*ISI Impact Factor = 0.699*)
- 217. Consequence of convective conditions for flow of Oldroyd-B nanofluid by a stretching cylinder *Authors: M. Khan*, M. Irfan, W.A. Khan and M. Sajid *Journal*: J. Braz. Soc. Mech. Sci. Eng., 41 (3), Article No. 116, *doi:*10.1007/s40430-019-1604-3 (2019) *Brazil*.

(*ISI Impact Factor* = **1.627**)

218. Importance of activation energy in development of chemical covalent bounding in flow of Sisko magneto-nanofluids over porous moving curved surface *Authors:* L. Ahmed and *M. Khan Journal*: Int. J. Hydrog. Energy, 44 (21), 10197 – 10206 (2019) UK.

(*ISI Impact Factor* = **4.229**)

219. Numerical simulation for MHD flow of Sisko nanofluid over a moving curved surface: A revised model *Authors:* L. Ahmad and *M. Khan Journal*: Microsyst. Technol., 25 (6), 2411 – 2428 (2019) *Germany*.

(ISI Impact Factor = 1.581)

220. Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink Authors: J. Ahmed, M. Khan and L. Ahmad Journal: J. Molecular Liquids, 287, Article No. 110853, doi: 10.1016/j.molliq.2019.04.130 (2019) Netherlands.

(*ISI Impact Factor* = **4.513**)

221. Convective heat transfer during the flow of Williamson nanofluid with thermal radiation and magnetic effects *Authors:* Hashim, *M. Khan* and A. Hamid *Journal*: Eur. Phys. J. Plus, 134 (2), Article No. 50, *doi*:10.1140/epjp/i2019-12473-9 (2019) *Italy*.

(*ISI Impact Factor* = **2.240**)

Impact of non-uniform heat sink/source and convective condition in radiative heat transfer to Oldroyd-B nanofluid: A revised proposed relation *Authors:* M. Irfan, *M. Khan* and W.A. Khan *Journal*: Physics Letters A, 383 (4), 376 – 382 (2019) *Netherlands*.

(*ISI Impact Factor* = **1.863**)

223. Transient thin film flow of nonlinear radiative Maxwell nanofluid over a rotating disk *Authors:* J. Ahmed, *M. Khan* and L. Ahmed *Journal*: Physics Letters A, 383 (12), 1300 – 1305 (2019) *Netherlands*. (ISI Impact Factor = 1.863)

Local non-similar solutions of convective flow of Carreau fluid in the presence of MHD and radiative heat transfer
 Authors: H. Sardar, *M. Khan* and L. Ahmad
 Journal: J. Braz. Soc. Mech. Sci. Eng., 41 (2), Article No. 69, *doi:*10.1007/s40430-018-1561-2 (2019) *Brazil*.

(*ISI Impact Factor* = **1.627**)

- 225. Swirling flow of Maxwell nanofluid between two coaxially rotating disks with variable thermal conductivity *Authors:* J. Ahmed, *M. Khan* and L. Ahmad *Journal:* J. Braz. Soc. Mech. Sci. Eng., 41 (2), Article No. 97, *doi:*10.1007/s40430-019-1589-y (2019) *Brazil.*(ISI Impact Factor = 1.627)
- 226. Impact of homogeneous-heterogeneous reactions and non-Fourier heat flux theory in Oldroyd-B fluid with variable conductivity *Authors:* M. Iran, *M. Khan* and W.A. Khan *Journal:* J. Braz. Soc. Mech. Sci. Eng., 41 (3), Article No. 135, *doi:*10.1007/s40430-019-1619-9 (2019) *Brazil*.

(*ISI Impact Factor* = **1.627**)

227. Transient thin film spin coating flow of chemically reactive and radiative Maxwell nanofluid over a rotating disk *Authors:* J. Ahmad, *M. Khan* and L. Ahmad *Journal:* Appl. Phys. A-Mater. Sci. Process., 125 (3), Article No. 161, *doi*:10.1007/s00339-019-2424-0 (2019) USA.

(*ISI Impact Factor* = **1.604**)

228. Boundary layer flow of a Cu-water nanofluid over a permeable shrinking cylinder with homogeneous-hetrogeneous reactions: Dual solutions *Authors:* A. Zaib, *M. Khan* and S. Shafie *Journal*: Thermal Science, 23 (1), 295 – 306 (2019) *Serbia*.

(*ISI Impact Factor* = **1.433**)

229. MHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity *Authors:* J. Ahmad, *M. Khan* and L. Ahmad *Journal*: Chin. J. Phys., 60, 22 – 34 (2019) *Netherlands*.

(*ISI Impact Factor* = **1.051**)

230. Influence of binary chemical reaction with Arrhenius activation energy in MHD nonlinear radiative flow of unsteady Carreau nanofluid: Dual solutions *Authors:* M. Irfan, *M. Khan*, W. A. Khan and L. Ahmad *Journal*: Appl. Phys. A-Mater. Sci. Process., 125 (3), Article No. 179, *doi*:10.1007/s00339-019-2457-4 (2019) USA.

(*ISI Impact Factor* = **1.604**)

- 231. Locally non-similar and thermally radiative Sisko fluid flow with magnetic and Joule heating effects *Authors:* L. Ahmad, A. Munir and *M. Khan Journal:* J. Magnetism Magnetic Materials., 487, Article No. 165284, *doi:* 10.1016 /j.jmmm.2019. 165284 (2019) *Netherlands*.
 (ISI Impact Factor = 3.046)
- 232. Investigation of mixed convection flow of Carreau nanofluid over a wedge in the presence of Soret and Dufor effects *Authors*: H. Sardar, L. Ahmed, *M. Khan* and A.S. Alshomrani *Journal*: Int. J. Heat Mass Transf., 137, 809 822 (2019) UK.

(*ISI Impact Factor* = **3.891**)

233. Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection

Authors: M. Irfan, W.A. Khan, *M. Khan*, and M. Mudassar Gulzar *Journal*: J. Phys. Chem. Solids, 125, 141 – 152 (2019) *USA*.

(*ISI Impact Factor* = **2.207**)

234. Numerical simulation for solar energy aspects on unsteady convective flow of MHD Cross nanofluid: A revised approach *Authors*: M. Azam, A. Shakoor, H.F. Rasool and *M. Khan Journal*: Int. J. Heat Mass Transf., 131, 495 – 505 (2019) UK.

(*ISI Impact Factor* = **3.891**)

235. An investigation of thermal and solutal stratification effects on mixed convection flow and heat transfer of Williamson nanofluid *Authors:* A. Hamid, Hashim, M. Alghamdi, *M. Khan* and A.S. Alshomrani *Journal*: J. Molecular Liquids, 284, 307 – 315 (2019) *Netherlands*.

(*ISI Impact Factor* = **4.513**)

236. Heat transport features of magnetic water-grephene oxide nanofluid flow with thermal radiation: Stability Test
 Authors: A. Hameed, Hashim, A. Hafeez, *M. Khan*, A.S. Alshomrani and M. Alghamdi
 Journal: Eur. J. Mech. B-Fluids, 76, 434 – 441 (2019) *Netherlands*.
 (ISI Impact Factor = 1.984)

237. Consequences of activation energy and binary chemical reaction for 3D flor of Cross nanofluid with radiative heat transfer *Authors:* W.A. Khan, F. Sultan, M. Ali, M. Shahzad, *M. Khan* and M. Irfan *Journal*: J. Braz. Soc. Mech. Sci. Eng., 41 (1), Article No. 04, *doi*:10.1007/s40430-018-1482-0 (2018) *Brazil*.

(*ISI Impact Factor* = **1.627**)

- 238. Numerical interpretation of autocatalysis chemical reaction for nonlinear radiative 3D flow of Cross magneto-fluid *Authors:* W.A. Khan, M. Ali, M. Shahzad, *M. Khan* and M. Irfan *Journal*: Pramana-J. Phys., 92 (2), Article No. 16, *doi*:10.1007/s12043-018-1678-y (2019) *India*. (*ISI Impact Factor* = 0.699)
- 239. Interpretation of chemical reactions and activation energy for unsteady 3D flow of Eyring-Powel magneto-nanofluid *Authors:* A.S. Alshomrani, M. Zaka Ullah, S.S. Capizzano, W.A. Khan and *M. Khan Journal*: Arabian J. Sci. Eng., 44, 579 589 (2019) *Germany*.

(*ISI Impact Factor* = **1.092**)

240. Theoretical aspects of thermophoresis and Brownian motion for three-dimensional flow of the Cross fluid with activation energy *Authors:* F. Sultan, W.A. Khan, M. Ali, M. Shahzad, M. Irfan and *M. Khan Journal*: Pramana-J. Phys., 92 (2), Article No. 21, *doi*:10.1007/s12043-018-1676-0 (2019) *India*. (*ISI Impact Factor* = 0.699)

In press/accepted

241. Non-Fourier's and Fick's laws applications in the flow of temperature dependent thermal conductivity of generalized Newtonian liquids: A 3D computational study Authors: L. Ahmad and M. Khan Journal: Scientia Iranica., (accepted) Netherlands. (ISI Impact Factor = 0.475) 242. Simultaneous impact of nonlinear radiative heat flux and Arrhenius activation energy in flow of chemically reacting Carreau nanofluid Authors: M. Irfan and M. Khan Journal: Appl. Nanosci., (accepted) Germany. (ISI Impact Factor = 2.951) 243. Chemically reactive and nonlinear radiative heat flux in mixed convection flow of Oldroyd-B nanofluid Authors: M. Irfan, M. Khan, M.M. Gulzar and W.A. Khan Journal: Appl. Nanosci., (accepted) Germany. (ISI Impact Factor = 2.951) 244. Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface Authors: Amir. M. Khan Journal: Neural Comput. Appl., (accepted) USA. (ISI Impact Factor = 4.215) 245. Transient flow and heat transfer mechanism for Williamson-nanomaterials caused by a stretching cylinder with variable thermal conductivity Authors: Hashim and M. Khan Journal: Microsyst. Technol., (accepted) Germany. (ISI Impact Factor = 1.581) 246. Scrutinization of 2D and mixed convection flow of generalized Newtonian fluid with nanoparticles and magnetic field Authors: M. Khan and H. Sardar Journal: Canadian J. Physics, (accepted) Canada. (*ISI Impact Factor* = **0.983**) Significance of thermophoresis, thermal-diffusion and diffusion-thermo on the flow of Maxwell 247. liquid film over a horizontal rotating disk Authors: J. Ahmed, M. Khan and L. Ahmad Journal: Physica Scripta, (accepted) UK. (ISI Impact Factor = 1.902) 248. Computational analysis of entropy generation for Cross nanofluid Authors: M. Ali, W.A. Khan, M. Irfan, F. Sultan, M. Shahzed and M. Khan Journal: Appl. Nanosci., (accepted) Germany. (ISI Impact Factor = 2.951) 249. Numerical simulation for transient flow of Williamson fluid with multiple slip model in the presence of chemically reacting species Authors: Amir, M. Khan Journal: Int. J. Numer. Methods Heat Fluid Flow, (accepted) UK. (ISI Impact Factor = 2.450) 250. Radiation and mixed convection effects on chemically reactive Sisko fluid flow over a curved stretching surface *Authors:* L. Ahmad, A.S. Alshomrani and *M. Khan Journal*: Iran J. Chem. Chem. Eng.-Int. Engl., (accepted) *Iran*.

(ISI Impact Factor = 0.860)

251. A rheological analysis of nanofluid subjected to melting heat transport characteristics *Authors:* W.A. Khan, M, Ali, M. Irfan, *M. Khan*, M. Shahzad and F. Sultan *Journal*: Appl. Nanosci., (accepted) *Germany*.

(ISI Impact Factor = 2.951)

- Professor Dr. Fazal Mahmood Mahomed School of Computational & Applied Mathematics, Centre for Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa. Email: Fazal.Mahomed@wits.ac.za
 - Professor Dr. Saleem Asghar (SI, TI)
 Department of Mathematics,
 COMSATS Institute of Information Technology,
 Islamabad, Pakistan.

 Email: <u>s_asgharpk@yahoo.com</u>
 - Professor Dr. Tasawar Hayat (SI, TI, AVH fellow) Department of Mathematics, Qauid-i-Azam University Islamabad, Pakistan. Email:
 - Professor Dr. Constantin Fetecau
 Department of Mathematics
 Technical University of Iasi
 R-6600 Iasi, Romania.
 Email: <u>c_fetecau@yahoo.com</u>
 - **Professor Dr. A.M. Siddiqui** Department of Mathematics The Pennsylvania State University York Campus, York, Pennsylvania 17403, USA. Email: <u>ams5@psu.edu</u>